已知橢圓C1的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為,P為橢圓上一動(dòng)點(diǎn).F1、F2分別為橢圓的左、右焦點(diǎn),且△PF1F2面積的最大值為

(1)求橢圓C1的方程;

(2)設(shè)橢圓短軸的上端點(diǎn)為A,M為動(dòng)點(diǎn),且成等差數(shù)列,求動(dòng)點(diǎn)M的軌跡C2的方程;

(3)作C2的切線l交C1于O、R兩點(diǎn),求證:

答案:
解析:

  解:(1)設(shè)橢圓C1的方程為

  ,

   2分

  由橢圓的幾何笥質(zhì)知,當(dāng)點(diǎn)P為橢圓的短軸端點(diǎn)時(shí),的面積最大.

  ,

  

  解得

  故橢圓C1的方程為 5分

  (2)由(1)知A(0,1),,

  設(shè)

  則

   7分

  

  

  整理得M的軌跡C2的方程為 10分

  (3)①當(dāng)切線的斜率存在時(shí),

  設(shè),代入橢圓方程得:

  ,

  

  設(shè)

  則 11分

  ,則

  

  

  又與C2相切,

  

  即,

  故 13分

 、诋(dāng)切線的斜率不存在時(shí),直線

  

  此時(shí)

  綜合①②得, 14分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為e=
3
2
,點(diǎn)P為橢圓上一動(dòng)點(diǎn),點(diǎn)F1、F2分別為橢圓的左、右焦點(diǎn),且△PF1F2面積的最大值為
3

(1)求橢圓C1的方程;
(2)設(shè)橢圓短軸的上端點(diǎn)為A,點(diǎn)M為動(dòng)點(diǎn),且
1
5
|
F2A
|2
1
2
F2M
AM
,
AF1
OM
成等差數(shù)列,求動(dòng)點(diǎn)M的軌跡C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為F1(-2,0),F(xiàn)2(2,0),點(diǎn)A(2,3)在橢圓C1上,求橢圓C1的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的中心在原點(diǎn),離心率為
4
5
,焦點(diǎn)在x軸上且長(zhǎng)軸長(zhǎng)為10.過(guò)雙曲線C2
x2
a2
-
y2
b2
=1(a>0,b>0)
右焦點(diǎn)F2作垂直于x軸的直線交雙曲線C2于M、N兩點(diǎn).
(I)求橢圓C1的標(biāo)準(zhǔn)方程;
(II)若雙曲線C2與橢圓C1有公共的焦點(diǎn),且以MN為直徑的圓恰好過(guò)雙曲線的左頂點(diǎn)A,求雙曲線C2的標(biāo)準(zhǔn)方程;
(III)若以MN為直徑的圓與雙曲線C2的左支有交點(diǎn),求雙曲線C2的離心率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C1的中心在原點(diǎn),焦點(diǎn)在y軸上,離心率為
5
3
,且經(jīng)過(guò)點(diǎn)M(
3
,
3
2
)

(Ⅰ)求橢圓C1的方程;
(Ⅱ)已知橢圓C2的長(zhǎng)軸和短軸都分別是橢圓C1的長(zhǎng)軸和短軸的m倍(m>1),中心在原點(diǎn),焦點(diǎn)在y軸上.過(guò)點(diǎn)C(-1,0)的直線l與橢圓C2交于A、B兩個(gè)不同的點(diǎn),若
AC
=2
CB
,求△OAB的面積取得最大值時(shí)的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•濟(jì)寧一模)已知橢圓C1的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為e=
3
2
,P
為橢圓上一動(dòng)點(diǎn),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),且△PF1F2面積的最大值為
3

(1)求橢圓C1的方程;
(2)設(shè)橢圓短軸的上端點(diǎn)為A、M為動(dòng)點(diǎn),且
1
5
|
F2A
|2,
1
2
F2M
AM
AF1
OM
成等差數(shù)列,求動(dòng)點(diǎn)M的軌跡C2的方程;
(3)過(guò)點(diǎn)M作C2的切線l交于C1與Q、R兩點(diǎn),求證:
OQ
OR
=0

查看答案和解析>>

同步練習(xí)冊(cè)答案