11.一船以22$\sqrt{6}$ km/h的速度向正北航行,在A處看燈塔S在船的北偏東45°,1小時(shí)30分后航行到B處,在B處看燈塔S在船的南偏東15°,則燈塔S與B之間的距離為(  )
A.66 kmB.96 kmC.132 kmD.33 km

分析 確定△ABS中的已知邊與角,利用正弦定理,即可求得結(jié)論.

解答 解:由題意,△ABS中,∠A=45°,∠B=15°,AB=33$\sqrt{6}$
∴∠S=120°
∴由正弦定理,可得BS=$\frac{ABsinA}{sinS}$=$\frac{33\sqrt{6}•\frac{\sqrt{2}}{2}}{\frac{\sqrt{3}}{2}}$=66km.
故選A.

點(diǎn)評(píng) 本題考查正弦定理,考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知Sn為等比數(shù)列{an}的前n項(xiàng)和,a1=8,且a4-1,a5,3a4+1成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及Sn
(2)若bn=log2(an•an+1),cn=$\frac{1}{_{n}•_{n+1}}$,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.等比數(shù)列{αn}中,α456=27,則α5=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=log2(x-1),g(x)=log2(6-2x)
(1)求函數(shù)φ(x)=f(x)+g(x)的定義域;
(2)試確定不等式f(x)≤g(x)中x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知a<0,-1<b<0,則有( 。
A.ab2<ab<aB.a<ab<ab2C.ab>b>ab2D.ab>ab2>a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知$sin(\frac{π}{2}+x)=\frac{5}{13}$,且x是第四象限角,則sinx的值等于(  )
A.$-\frac{12}{13}$B.$-\frac{5}{13}$C.$\frac{12}{13}$D.$\frac{5}{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.給定兩個(gè)向量$\overrightarrow a=({3,4})\;,\;\overrightarrow b=({2,1})$,若$({\overrightarrow a+x\overrightarrow b})∥({\overrightarrow a-\overrightarrow b})$,則實(shí)數(shù)x等于( 。
A.-3B.$\frac{3}{2}$C.3D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知函數(shù)f(x)=xln(x-1)-a,下列說(shuō)法正確的是( 。
A.當(dāng)a=0時(shí),f(x)沒(méi)有零點(diǎn)B.當(dāng)a<0時(shí),f(x)有零點(diǎn)x0,且x0∈(2,+∞)
C.當(dāng)a>0時(shí),f(x)有零點(diǎn)x0,且x0∈(1,2)D.當(dāng)a>0時(shí),f(x)有零點(diǎn)x0,且x0∈(2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.雙曲線$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的離心率e=$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案