定義在R上的函數(shù)f(x),其導(dǎo)函數(shù)f′(x)滿足f′(x)>1,且f(2)=3,則關(guān)于x的不等式f(x)<x+1的解集為
(-∞,2)
(-∞,2)
分析:由f′(x)>1,f(x)<x+1可抽象出一個(gè)新函數(shù)g(x),利用新函數(shù)的性質(zhì)(單調(diào)性)解決問(wèn)題,即可得到答案.
解答:解:設(shè)g(x)=f(x)-(x+1),
因?yàn)閒(2)=3,f′(x)>1,
所以g(2)=f(2)-(2+1)=0,
g′(x)=f′(x)-1>0,
所以g(x)在R上是增函數(shù),且g(2)=0.
所以f(x)<x+1的解集即是g(x)<0=g(2)的解集.
∴x<2.
故答案為:(-∞,2).
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,解決此類問(wèn)題的關(guān)鍵是構(gòu)造函數(shù)g(x)=f(x)-(x+1),然后利用導(dǎo)數(shù)研究g(x)的單調(diào)性,從而解決問(wèn)題,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)既是偶函數(shù)又是周期函數(shù),若f(x)的最小正周期是π,且當(dāng)x∈[0,
π
2
]時(shí),f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

20、已知定義在R上的函數(shù)f(x)=-2x3+bx2+cx(b,c∈R),函數(shù)F(x)=f(x)-3x2是奇函數(shù),函數(shù)f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當(dāng)x∈(0,4)時(shí),f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個(gè)最低點(diǎn)之間距離為π,函數(shù)y=sin(2x+
π
3
)圖象所有對(duì)稱中心都在f(x)圖象的對(duì)稱軸上.
(1)求f(x)的表達(dá)式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在R上的函數(shù)f(x)的圖象是連續(xù)不斷的,且有如下對(duì)應(yīng)值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數(shù)f(x)一定存在零點(diǎn)的區(qū)間是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案