【題目】如圖,在平面直角坐標系xOy中,橢圓C: =1(a>1)的左、右頂點分別為A、B,P是橢圓C上任一點,且點P位于第一象限.直線PA交y軸于點Q,直線PB交y軸于點R.當點Q坐標為(0,1)時,點R坐標為(0,2)

(1)求橢圓C的標準方程;
(2)求證: 為定值;
(3)求證:過點R且與直線QB垂直的直線經(jīng)過定點,并求出該定點的坐標.

【答案】
(1)解:由題意可得A(﹣a,0),B(a,0),

當點Q坐標為(0,1)時,點R坐標為(0,2),

即有kPA= ,直線PA:y= x+1,

kPB=﹣ ,直線PA:y=﹣ x+2,

解得交點P( , ),

代入橢圓方程可得 + =1,

解得a= ,

則橢圓C的標準方程為 =1


(2)證明:設(shè)Q(0,s),R(0,t),

由橢圓的方程可得A(﹣ ,0),B( ,0),

即有直線PA:y= x+s,直線PB的方程為y=﹣ x+t,

解得交點P( , ),

代入橢圓方程可得 + =1,

化簡可得st=2,

即有 =st=2為定值;


(3)證明:由(2)可得st=2,即t= ,

直線QB的斜率為k=﹣ ,

即有過點R且與直線QB垂直的直線方程為y= x+t,

即為y= ,令x=﹣ ,可得y=0,

則過點R且與直線QB垂直的直線經(jīng)過定點,坐標為(﹣ ,0)


【解析】(1)求得A,B的坐標,直線PA,PB的方程,求交點P,代入橢圓方程,解方程,可得a,進而得到橢圓方程;(2)設(shè)Q(0,s),R(0,t),求得直線PA,PB的方程,求交點P,代入橢圓方程,化簡整理可得st=2,再由向量的數(shù)量積的坐標表示可得定值;(3)求得QB的斜率,運用兩直線垂直的條件:斜率之積為﹣1,求得垂線的方程,由st=2,代入,結(jié)合直線恒過定點的求法,可得定點.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2sin2 +x)﹣ cos2x﹣1,x∈R,若函數(shù)k(x)=f(x+a)的圖象關(guān)于點(﹣ ,0)對稱,且α∈(0,π),則α=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,D是到原點的距離不大于1的點構(gòu)成的區(qū)域,E是滿足不等式組 的點(x,y)構(gòu)成的區(qū)域,向D中隨機投一點,則所投的點落在E中的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,江的兩岸可近似的看成兩平行的直線,江岸的一側(cè)有A,B兩個蔬菜基地,江的另一側(cè)點C處有一個超市.已知A、B、C中任意兩點間的距離為20千米.超市欲在AB之間建一個運輸中轉(zhuǎn)站D,A,B兩處的蔬菜運抵D處后,再統(tǒng)一經(jīng)過貨輪運抵C處.由于A,B兩處蔬菜的差異,這兩處的運輸費用也不同.如果從A處出發(fā)的運輸費為每千米2元,從B處出發(fā)的運輸費為每千米1元,貨輪的運輸費為每千米3元.

(1)設(shè)∠ADC=α,試將運輸總費用S(單位:元)表示為α的函數(shù)S(α),并寫出自變量的取值范圍;
(2)問中轉(zhuǎn)站D建在何處時,運輸總費用S最。坎⑶蟪鲎钚≈担

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)x∈R,y∈R,若復(fù)數(shù)(x2+y2-4)+(x-y)i是純虛數(shù),則點(x,y)的軌跡是(  )

A. 以原點為圓心,以2為半徑的圓

B. 兩個點,其坐標為(2,2),(-2,-2)

C. 以原點為圓心,以2為半徑的圓和過原點的一條直線

D. 以原點為圓心,以2為半徑的圓,并且除去兩點(,),(-,-)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在極坐標系中,設(shè)直線過點A( , ),B(3, ),且直線與曲線C:ρ=2rsinθ(r>0)有且只有一個公共點,求實數(shù)r的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知恒等式(1+x+x2n=a0+a1x+a2x2+…+a2nx2n
(1)求a1+a2+a3+…+a2n和a2+2a3+22a4+…+22n2a2n的值;
(2)當n≥6時,求證: a2+2A a3+…+22n2 a2n<49n2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)=xex﹣asinxcosx(a∈R,其中e是自然對數(shù)的底數(shù)).
(1)當a=0時,求f(x)的極值;
(2)若對于任意的x∈[0, ],f(x)≥0恒成立,求a的取值范圍;
(3)是否存在實數(shù)a,使得函數(shù)f(x)在區(qū)間 上有兩個零點?若存在,求出a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在圓上任取一點,過點軸的垂線段,為垂足.,當點在圓上運動時,

(1)求點的軌跡的方程;

(2) 若,直線交曲線兩點(點、與點不重合),且滿足.為坐標原點,點滿足,證明直線過定點,并求直線的斜率的取值范圍.

查看答案和解析>>

同步練習冊答案