已知對(duì)任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線,則a的取值范圍是( 。
分析:求出f(x)導(dǎo)函數(shù)的值域,由直線x+y+m=0都不是f(x)=x3-3ax的切線得到-1不屬于導(dǎo)函數(shù)的值域,得到關(guān)于a的不等式,求出解集得到a的取值范圍即可.
解答:解:由f(x)=x3-3ax可得f′(x)=3x2-3a∈[-3a,+∞),
∵對(duì)任意m∈R,直線x+y+m=0都不是y=f(x)的切線,
∴-1∉[-3a,+∞),
∴-1<-3a,實(shí)數(shù)a的取值范圍是a<
1
3

故選C.
點(diǎn)評(píng):本題考查用導(dǎo)數(shù)求曲線上某點(diǎn)切線的斜率,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知對(duì)任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個(gè)x0,使得|f(x0)|≥
14
成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知對(duì)任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個(gè)x0,使得數(shù)學(xué)公式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年遼寧省丹東市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知對(duì)任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個(gè)x,使得成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)單元檢測(cè):函數(shù)與導(dǎo)數(shù)(解析版) 題型:解答題

已知對(duì)任意m∈R,直線x+y+m=0都不是f(x)=x3-3ax(a∈R)的切線.
(I)求a的取值范圍;
(II)求證在x∈[-1,1]上至少存在一個(gè)x,使得成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案