在△ABC中,∠C=90°,M是BC的中點(diǎn).若sin∠BAM=,則sin∠BAC=________.

 

【解析】因?yàn)閟in∠BAM=,所以cos∠BAM=.在△ABM中,利用正弦定理,得,所以.

在Rt△ACM中,有=sin∠CAM=sin(∠BAC-∠BAM).由題意知BM=CM,所以=sin(∠BAC-∠BAM).

化簡(jiǎn),得2sin∠BACcos∠BAC-cos2∠BAC=1.

所以=1,解得tan∠BAC=.

再結(jié)合sin2∠BAC+cos2∠BAC=1,∠BAC為銳角可解得sin∠BAC=.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

若圓心在x軸上、半徑為的圓O位于y軸左側(cè),且與直線x+2y=0相切,則圓O的方程是(  )

A.(x-)2+y2=5 B.(x+)2+y2=5

C.(x-5)2+y2=5 D.(x+5)2+y2=5

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 概率與統(tǒng)計(jì)(解析版) 題型:選擇題

6位選手依次演講,其中選手甲不在第一個(gè)也不在最后一個(gè)演講,則不同的演講次序共有( )

A.240種 B.360種 C.480種 D.720種

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:選擇題

(2013·大綱全國(guó)卷)已知數(shù)列{an}滿足3an+1+an=0,a2=-,則{an}的前10項(xiàng)和等于(  )

A.-6(1-3-10) B.(1-3-10)

C.3(1-3-10) D.3(1+3-10)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:解答題

在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos 2A-3cos(B+C)=1.

(1)求角A的大;

(2)若△ABC的面積S=5,b=5,求sin Bsin C的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:選擇題

已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯(cuò)誤的是(  )

A.?x0∈R,f(x0)=0

B.函數(shù)y=f(x)的圖象是中心對(duì)稱圖形

C.若x0是f(x)的極小值點(diǎn),則f(x)在區(qū)間(-∞,x0)上單調(diào)遞減

D.若x0是f(x)的極值點(diǎn),則f′(x0)=0

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:選擇題

函數(shù)y=ln(1-x)的定義域?yàn)?  )

A.(0,1) B.[0,1) C.(0,1] D.[0,1]

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年吉林省延邊州高考復(fù)習(xí)質(zhì)量檢測(cè)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知雙曲線的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,且其漸近線的方程為,則該雙曲線的標(biāo)準(zhǔn)方程為

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014-2015學(xué)年浙江省嘉興市高二暑假作業(yè)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:填空題

關(guān)于的不等式的解集為.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案