【題目】已知函數(shù) ,則函數(shù) 滿足( )
A.最小正周期為
B.圖象關(guān)于點 對稱
C.在區(qū)間 上為減函數(shù)
D.圖象關(guān)于直線 對稱

【答案】D
【解析】∵函數(shù)fx)=cosx+ sinx= cosx sinxsinx= sin2x

= sin2x+cos2x)﹣ = sin2x+ + ,

故它的最小正周期為 ,故A不正確;

x= ,求得f(x)= + = ,為函數(shù)f(x)的最大值,故函數(shù)f(x)的圖象關(guān)于直線x= 對稱,

且f(x)的圖象不關(guān)于點( , )對稱,故B不正確、D正確;

在區(qū)間(0, )上,2x+ ∈( ),f(x)= sin(2x+ )+ 為增函數(shù),故C不正確,

故答案為::D.

先用恒等變換將函數(shù)式化為一個角的一種三角函數(shù)的形式,再求周期、單調(diào)性和對稱性。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=ax2+2(a﹣3)x+1在區(qū)間[﹣2,+∞)上遞減,則實數(shù)a的取值范圍是(
A.(﹣∞,0)
B.[﹣3,+∞)
C.[﹣3,0]
D.(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α,β是平面,m,n是直線.下列命題中不正確的是 ( )
A.若m∥n,m⊥α,則n⊥α
B.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥β
D.若m⊥α, ,則α⊥β

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(Ⅰ)當(dāng) 時,討論 的單調(diào)性;
(Ⅱ)設(shè) ,若 恒成立,求 的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“共享單車”的出現(xiàn),為我們提供了一種新型的交通方式.某機構(gòu)為了調(diào)查人們對此種交通方式的滿意度,從交通擁堵不嚴(yán)重的 城市和交通擁堵嚴(yán)重的 城市分別隨機調(diào)查了20個用戶,得到了一個用戶滿意度評分的樣本,并繪制出莖葉圖(如圖所示):

合計

認可

不認可

合計

(Ⅰ)若得分不低于80分,則認為該用戶對此種交通方式“認可”,否則認為該用戶對此種交通方式“不認可”,請根據(jù)此樣本完成此 列聯(lián)表,并據(jù)此樣本分析是否有 的把握認為城市擁堵與認可共享單車有關(guān);
(Ⅱ)若從此樣本中的 城市和 城市各抽取1人,則在此2人中恰有一人認可的條件下,此人來自 城市的概率是多少?
附:參考數(shù)據(jù):(參考公式:

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l的參數(shù)方程為 為參數(shù)),以坐標(biāo)原點為極點, x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為 .直線l過點 .
(1)若直線l與曲線C交于A,B兩點,求 的值;
(2)求曲線C的內(nèi)接矩形的周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某志愿者到某山區(qū)小學(xué)支教,為了解留守兒童的幸福感,該志愿者對某班40名學(xué)生進行了一次幸福指數(shù)的調(diào)查問卷,并用莖葉圖表示如下(注:圖中幸福指數(shù)低于70,說明孩子幸福感弱;幸福指數(shù)不低于70,說明孩子幸福感強).

(Ⅰ)根據(jù)莖葉圖中的數(shù)據(jù)完成 列聯(lián)表,并判斷能否有 的把握認為孩子的幸福感強與是否是留守兒童有關(guān)?

(Ⅱ)從15個留守兒童中按幸福感強弱進行分層抽樣,共抽取5人,又在這5人中隨機抽取2人進行家訪,求這2個學(xué)生中恰有一人幸福感強的概率.
參考公式: ; 附表:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中,為常量,且,的圖象經(jīng)過點,

)求,的值.

)當(dāng)時,函數(shù)的圖像恒在函數(shù)圖像的上方,求實數(shù)的取值范圍.

)定義在上的一個函數(shù),如果存在一個常數(shù),使得式子對一切大于的自然數(shù)都成立,則稱函數(shù)上的函數(shù)(其中,.試判斷函數(shù)是否為上的函數(shù).若是,則求出的最小值;若不是,則請說明理由.(注:).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一批產(chǎn)品中,有一級品100,二級品60,三級品40,分別用系統(tǒng)抽樣和分層抽樣的方法,從這批產(chǎn)品中抽取一個容量為20的樣本,寫出抽樣過程,并說明采用哪種抽樣方法更能反映總體水平.

查看答案和解析>>

同步練習(xí)冊答案