在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個(gè)“類”,記為[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.給出如下四個(gè)結(jié)論:
①2013∈[3];         
②-2∈[2];   
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④整數(shù)a,b屬于同一“類”的充要條件是“a-b∈[0]”.
其中,正確結(jié)論的個(gè)數(shù)為
3
3
分析:根據(jù)“類”的定義分別進(jìn)行判斷即可.
解答:解:①∵2013÷5=402…3,∴2013∈[3],故①正確;
②∵-2=5×(-1)+3,∴-2∈[3],故②錯(cuò)誤;
③因?yàn)檎麛?shù)集中的數(shù)被5除的數(shù)可以且只可以分成五類,故Z=[0]∪[1]∪[2]∪[3]∪[4],故③正確;
④∵整數(shù)a,b屬于同一“類”,∴整數(shù)a,b被5除的余數(shù)相同,從而a-b被5除的余數(shù)為0,
反之也成立,故“整數(shù)a,b屬于同一“類”的充要條件是“a-b∈[0]”.故④正確.
正確的結(jié)論為①③④.
故答案為:3.
點(diǎn)評(píng):本題主要考查新定義的應(yīng)用,利用定義正確理解“類”的定義是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個(gè)“類”,記為[k],即[k]={5n+k丨n∈Z},k=0,1,2,3,4.給出如下四個(gè)結(jié)論:
①2011∈[1];
②-3∈[3];
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整數(shù)a,b屬于同一“類”的充要條件是“a-b∈[0]”.
其中,正確結(jié)論的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個(gè)“類”,記為[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.給出如下四個(gè)結(jié)論:
①2011∈[1];   
②-3∈[3];   
③Z=[0]∪[1]∪[2]∪[3]∪[4];
④“整數(shù)a,b屬于同一‘類’”的充要條件是“a-b∈[0]”.
其中,正確結(jié)論的是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•汕頭二模)在整數(shù)集Z中,被5除所得余數(shù)為k的所有整數(shù)組成一個(gè)“類“,記為[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.給出如下三個(gè)結(jié)論:
①2013∈[3]
②-2∈[2]
③Z=[0]∪[1]∪[2]∪[3]∪[4];
其中,正確結(jié)論的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在整數(shù)集z中,被5除所得余數(shù)為k的所有整數(shù)組成一個(gè)“類”,記為[k],則[k]=[5n+k],k=0,1,2,3,4,則下列結(jié)論錯(cuò)誤的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案