(本題滿分14分)
已知函數(shù),點(diǎn)
(Ⅰ)若,函數(shù)上既能取到極大值,又能取到極小值,求的取值范圍;
(Ⅱ) 當(dāng)時(shí),對(duì)任意的恒成立,求的取值范圍;
(Ⅲ)若,函數(shù)處取得極值,且,是坐標(biāo)原點(diǎn),證明:直線與直線不可能垂直.

解:(Ⅰ)當(dāng)時(shí),,
,根據(jù)導(dǎo)數(shù)的符號(hào)可以得出函數(shù)處取得極大值,
處取得極小值.函數(shù)上既能取到極大值,又能取到極小值,
則只要即可,即只要即可.
所以的取值范圍是.                                    ………… 4分
(Ⅱ)當(dāng)時(shí),對(duì)任意的恒成立,
對(duì)任意的恒成立,
也即在對(duì)任意的恒成立.                  
,則.        ………… 6分
,則
則這個(gè)函數(shù)在其定義域內(nèi)有唯一的極小值點(diǎn),
故也是最小值點(diǎn),所以
從而,所以函數(shù)單調(diào)遞增.
函數(shù).故只要即可.
所以的取值范圍是                             ………… 9分
(Ⅲ)假設(shè),即
,
,

由于是方程的兩個(gè)根,
.代入上式得.   ………… 12分
,
,與矛盾,
所以直線與直線不可能垂直.                           ………… 14分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)已知向量 ,,函數(shù).   (Ⅰ)求的單調(diào)增區(qū)間;  (II)若在中,角所對(duì)的邊分別是,且滿足:,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本題滿分14分)已知,且以下命題都為真命題:

命題 實(shí)系數(shù)一元二次方程的兩根都是虛數(shù);

命題 存在復(fù)數(shù)同時(shí)滿足.

求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省高三第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分14分)已知函數(shù)

(1)若,求x的值;

(2)若對(duì)于恒成立,求實(shí)數(shù)m的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

(本題滿分14分)

已知橢圓的離心率為,過(guò)坐標(biāo)原點(diǎn)且斜率為的直線相交于、,

⑴求的值;

⑵若動(dòng)圓與橢圓和直線都沒(méi)有公共點(diǎn),試求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省惠州市高三第三次調(diào)研考試數(shù)學(xué)理卷 題型:解答題

((本題滿分14分)

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點(diǎn),EF∥BC,AE = x,G是BC的中點(diǎn).沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

(1)當(dāng)x=2時(shí),求證:BD⊥EG ;

(2)若以F、B、C、D為頂點(diǎn)的三棱錐的體積記為,

的最大值;

(3)當(dāng)取得最大值時(shí),求二面角D-BF-C的余弦值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案