數(shù)列{an}是遞增的等差數(shù)列,且a1+a6=-6,a3•a4=8.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{an}的前n項和Sn的最小值;
(3)求數(shù)列{|an|}的前n項和Tn
分析:(1)依題意,解方程組
a1+a6=-6
a3a4=8
?
a3+a4=-6
a3a4=8
可得a3=-4,a4=-2,從而可求數(shù)列{an}的通項公式;
(2)由(1)知,an=2n-10,于是可得Sn=(n-
9
2
)
2
-
81
4
,繼而可得Sn的最小值;
(3)由an≥0解得n≥5,分1≤n≤5與n≥6討論,可分別求得數(shù)列{|an|}的前n項和Tn
解答:解:(1)由
a1+a6=-6
a3a4=8
得:
a3+a4=-6
a3a4=8

∴a3、a4是方程x2+6x+8=0的二個根,
∴x1=-2,x2=-4;
∵等差數(shù)列{an}是遞增數(shù)列,
∴a3=-4,a4=-2,
∴公差d=2,a1=-8.
∴an=2n-10;
(2)∵Sn=
n(a1+an)
2
=n2-9n=(n-
9
2
)
2
-
81
4
,
∴(Snmin=S4=S5=-20;
(3)由an≥0得2n-10≥0,解得n≥5,此數(shù)列前四項為負的,第五項為0,從第六項開始為正的.
當1≤n≤5且n∈N*時,
Tn=|a1|+|a2|+…+|an|
=-(a1+a2+…+an
=-Sn
=-n2+9n;
當n≥6且n∈N*時,
Tn=|a1|+|a2|+…+|a5|+|a6|+…+|an|
=-(a1+a2+…+a5)+(a6+…+an
=Sn-2S5
=n2-9n-2(25-45)
=n2-9n+40.
∴Tn=
9n-n2,1≤n≤5,n∈N*
n2-9n+40,n≥6,n∈N*
點評:本題考查數(shù)列的求和,著重考查等差數(shù)列的求和,突出方程思想與分類討論思想的綜合運用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

有下列四個命題:
①函數(shù)y=10-x和函數(shù)y=10x的圖象關(guān)于x軸對稱;
②所有冪函數(shù)的圖象都經(jīng)過點(1,1);
③曲線y=x2與y2=x所圍成的圖形的面積是
1
3
;
④若{an}是首項大于零的等比數(shù)列,則“a1<a2”是“數(shù)列{an}是遞增數(shù)列”的充要條件.
其中真命題的個數(shù)有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè){an}是公比為q的等比數(shù)列,給出下列命題
①數(shù)列{an}的前n項和Sn=
a1-an+11-q
;
②若q>1,則數(shù)列{an}是遞增數(shù)列;
③若a1<a2<a3,則數(shù)列{an}是遞增數(shù)列;
④若等比數(shù)列{an}前n項和Sn=3n+a,則a=-1.
其中正確的是
③④
③④
 (請將你認為正確的命題的序號都寫上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等比數(shù)列{an}的首項為a1,公比為q,給出下列四個有關(guān)數(shù)列{an}的命題:
p1:如果a1>0且q>1,那么數(shù)列{an}是遞增的等比數(shù)列;
p2:如果a1<0且q<1,那么數(shù)列{an}是遞減的等比數(shù)列;
p3:如果a1<0且0<q<1,那么數(shù)列{an}是遞增的等比數(shù)列;
p4:如果a1>0且0<q<1,那么數(shù)列{an}是遞減的等比數(shù)列.
其中為真命題的個數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源:高中數(shù)學全解題庫(國標蘇教版·必修4、必修5) 蘇教版 題型:044

數(shù)列{an}是首項為1的等差數(shù)列,數(shù)列{bn}是首項為1的等比數(shù)列,設(shè)cn=an·bn(n∈N*),且數(shù)列{cn}的前三項依次為1,4,12.

(1)求數(shù)列{an},{bn}的通項公式;

(2)若數(shù)列{an}是遞增的等差數(shù)列,求數(shù)列{cn}的前n項的和.

查看答案和解析>>

同步練習冊答案