已知橢圓的中心在原點,焦點在軸上,離心率為,長軸長為,直線交橢圓于不同的兩點.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不經(jīng)過橢圓上的點,求證:直線的斜率互為相反數(shù).
(1);(2);(3)證明過程詳見解析.
【解析】
試題分析:本題考查橢圓的標準方程和幾何性質、直線方程、韋達定理等基礎知識,考查用代數(shù)方法研究圓錐曲線的性質以及數(shù)形結合的數(shù)學思想方法,考查運算求解能力、綜合分析和解決問題的能力.第一問,由長軸長得出的值,再由離心率得出的值,再計算出的值,從而得到橢圓的標準方程;第二問,由于直線與橢圓相交,所以列出方程組,經(jīng)過消參,得到關于的方程,因為直線與橢圓有2個交點,所以方程有2個實根,所以方程的判別式大于0,解出的取值范圍;第三問,將結論轉化為證明,寫出點坐標,利用第二問的關于的方程,用韋達定理寫出兩根之和、兩根之積,先用兩點的斜率公式列出的斜率,再通分,將上述兩根之和兩根之積代入化簡直到等于0為止.
試題解析: (Ⅰ)由題意知, ,又因為,解得
故橢圓方程為. 4分
(Ⅱ)將代入并整理得,
,解得. 7分
(Ⅲ)設直線的斜率分別為和,只要證明.
設,
則,. 9分
分子
所以直線的斜率互為相反數(shù). 14分
考點:1.橢圓的標準方程;2.直線與橢圓的位置關系;3.斜率公式;4.韋達定理.
科目:高中數(shù)學 來源: 題型:
| ||
2 |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
25 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
2 |
2 |
3 |
4 |
3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com