設(shè)數(shù)列{}(∈N*)滿足是其前n項(xiàng)的和,且,則下列結(jié)論錯(cuò)誤的是
A.<0B.a(chǎn)7=0C.S9>S5D.S6與S7均為Sn的最大值
C
因?yàn)閍n+2=2an+1-an所以數(shù)列是等差數(shù)列,
由S5<S6得a1+a2+a3+…+a5<a1+a2+…+a5+a6,即a6>0,
又∵S6=S7,
∴a1+a2+…+a6=a1+a2+…+a6+a7,
∴a7=0,故B正確;
同理由S7>S8,得a8<0,
∵d=an+1-an=a7-a6<0,故A正確;
而C選項(xiàng)S9>S5,即a6+a7+a8+a9>0,可得2(a7+a8)>0,由結(jié)論a7=0,a8<0,顯然C選項(xiàng)是錯(cuò)誤的.
∵S5<S6,S6=S7>S8,∴S6與S7均為Sn的最大值,故D正確;
故選C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列,且滿足的值為
A.bB.b—aC.—bD.—a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知數(shù)列的前項(xiàng)和為,且與2的等差中項(xiàng),數(shù)列中,,點(diǎn)在直線上.
⑴求的值;
⑵求數(shù)列的通項(xiàng);
⑶ 設(shè),求數(shù)列的前n項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù)是自然對數(shù)的底數(shù))

(1)求的最小值;
(2)不等式的解集為P,  若  
求實(shí)數(shù)的取值范圍;
(3)已知,是否存在等差數(shù)列和首項(xiàng)為公比大于0的等比數(shù)列,使數(shù)列的前n項(xiàng)和等于

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題11分)已知數(shù)列的前項(xiàng)和為
(1)求數(shù)列的通項(xiàng)公式;
(2)若,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知數(shù)列{an}中,a1 =1,前 n項(xiàng)和為Sn,且點(diǎn)(anan+1)在直線xy+1=0上.
計(jì)算+++…

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列的前n項(xiàng)和,則
A.=B.=
C.=D.=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義:若數(shù)列對任意的正整數(shù)n,都有d為常數(shù)),則稱為“絕對和數(shù)列”,d叫做“絕對公和”,已知“絕對和數(shù)列”,“絕對公和”,則其前2010項(xiàng)和的最小值為                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.已知數(shù)列滿足,且。
(1)求,,的值;
(2)猜想數(shù)列的通項(xiàng)公式,并用數(shù)學(xué)歸納法加以證明。

查看答案和解析>>

同步練習(xí)冊答案