(2)已知函數f(x)滿足f(x+y)+f(x-y)=
解析:(1)此函數未給出表達式屬抽象函數,考慮到等式f(ab) =f(a)+f(b)對a、b∈R均成立,可用特殊值代入,將f(36)轉化為f(2)和f(3)來求.?
f(36)=f(4·9)=f(4)+f(9),?
令a=b,得f(a2)=
(2)由題設f(x)的定義域為R,令x=y=0,得
又f(0)≠0,
∴f(0)=1.?
再令x=y=,
得f(π)+f(0)=
故f(π)=-1.?
要求f(2π),只需令x=y=π.?
得f(2π)+f(0)=
∴f(2π)=1.
科目:高中數學 來源: 題型:
1+x2 |
b(1+x2) |
3 |
3 |
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:高中數學 來源: 題型:閱讀理解
仔細閱讀下面問題的解法:
設A=[0, 1],若不等式21-x-a>0在A上有解,求實數a的取值范圍。
解:由已知可得 a < 21-x
令f(x)= 21-x ,∵不等式a <21-x在A上有解,
∴a <f(x)在A上的最大值.
又f(x)在[0,1]上單調遞減,f(x)max =f(0)=2. ∴實數a的取值范圍為a<2.
研究學習以上問題的解法,請解決下面的問題:
(1)已知函數f(x)=x2+2x+3(-2≤x≤-1),求f(x)的反函數及反函數的定義域A;
(2)對于(1)中的A,設g(x)=,x∈A,試判斷g(x)的單調性(寫明理由,不必證明);
(3)若B ={x|>2x+a–5},且對于(1)中的A,A∩B≠F,求實數a的取值范圍。
查看答案和解析>>
科目:高中數學 來源:新課標高三數學函數的圖象奇偶性、周期性專項訓練(河北) 題型:解答題
若函數f(x)對定義域中任意x均滿足f(x)+f(2a-x)=2b,則稱函數y=f(x)的圖象關于點(a,b)對稱.
(1)已知函數f(x)=的圖象關于點(0,1)對稱,求實數m的值;
(2)已知函數g(x)在(-∞,0)∪(0,+∞)上的圖象關于點(0,1)對稱,且當x∈(0,+∞)時,g(x)=x2+ax+1,求函數g(x)在(-∞,0)上的解析式;
(3)在(1)(2)的條件下,當t>0時,若對任意實數x∈(-∞,0),恒有g(x)<f(t)成立,求實數a的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com