已知直線l在x軸上的截距為1,且垂直于直線y=
1
2
x,則l的方程是( 。
A、y=-2x+2
B、y=-2x+1
C、y=2x+2
D、y=2x+1
考點:直線的一般式方程與直線的垂直關系
專題:直線與圓
分析:利用相互垂直的直線斜率之間的關系即可得出.
解答: 解:設垂直于直線y=
1
2
x的直線方程為y=-2x+m.
令y=0,解得x=
m
2
=1,解得m=2.
∴直線l的方程是y=-2x+2.
故選:A.
點評:本題考查了相互垂直的直線斜率之間的關系,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

由直線y=2-x,y=-
1
3
x和曲線y=
x
所圍成的平面圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=sinx在(-∞,+∞)的單調遞增區(qū)間是( 。
A、[0,π]
B、[
π
2
,
2
]
C、[-
π
2
+2kπ,
π
2
+2kπ}](k∈Z)
D、[2kπ,π+2kπ](k∈Z)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知全集U={x∈R|x>0},集合A={x∈R|x≥2},則CUA=( 。
A、{x∈R|x<2}
B、{x∈R|0<x<2}
C、{x∈R|x≤2}
D、{x∈R|0<x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x)>1-f′(x),f(0)=0,f′(x)是f(x)的導函數(shù),則不等式exf(x)>ex-1(其中e為自然對數(shù)的底數(shù))的解集為( 。
A、(-∞,-1)∪(0,+∞)
B、(0,+∞)
C、(-∞,0)∪(1,+∞)
D、(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

解不等式:3 x2-8<32x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比例函數(shù),則a2=( 。
A、-4B、-6C、-8D、-10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=x2-2ax在區(qū)間[2,+∞)上是增函數(shù),則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若∠B=∠C且7a2+b2+c2=4
3
,則△ABC的面積的最大值為
 

查看答案和解析>>

同步練習冊答案