已知二次函數(shù)均為實數(shù),且滿足,對于任意實數(shù)都有,并且當時有成立。
(1)求的值;
(2)證明:;
(3)當∈[-2,2]且取最小值時,函數(shù)為實數(shù))是單調(diào)函數(shù),求證:

(Ⅰ)f(1)=1.(Ⅱ)略  (Ⅲ)略

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)設函數(shù)的定義域為R,當時,,且對任意,都有,且。
(1)求的值;
(2)證明:在R上為單調(diào)遞增函數(shù);
(3)若有不等式成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
已知函數(shù)
(1)若函數(shù)在(,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,求實數(shù)a的值;
(2)是否存在正整數(shù)a,使得在()上既不是單調(diào)遞增函數(shù)也不是單調(diào)遞減函數(shù)?若存在,試求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=3x+2,x∈[-1,2],證明該函數(shù)的單調(diào)性并求出其最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)在(0,1)內(nèi)是增函數(shù).
(1)求實數(shù)的取值范圍;
(2)若,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知的定義域為,且恒有等式對任意的實
數(shù)成立.
(Ⅰ)試求的解析式;
(Ⅱ)討論上的單調(diào)性,并用單調(diào)性定義予以證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

.已知函數(shù)f ( x ) = 3x , f ( a + 2 ) =" 18" , g ( x ) =· 3ax – 4x的定義域為[0,1].
(Ⅰ)求a的值;
(Ⅱ)若函數(shù)g ( x )在區(qū)間[0,1]上是單調(diào)遞減函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知: 是定義在區(qū)間上的奇函數(shù),且.若對于任意的時,都有
(1)解不等式
(2)若對所有恒成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分10分)已知函數(shù),求函數(shù),的解析式.

查看答案和解析>>

同步練習冊答案