精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)已知正四棱錐P—ABCD的高為,底面邊長為,其內接正四棱柱EFGH—E1F1G1H1的四個頂點E、F、G、H在底面上,另外四個頂點E1、F1、G1、H1分別在棱PA、PB、PC、PD上(如圖所示),設正四棱柱的底面邊長為

    (Ⅰ)設內接正四棱柱的體積為,求出函數的解析式;

     (Ⅱ)試求該內接正四棱柱的最大體積及對應的的值.

(Ⅰ)


解析:

(Ⅰ)設正四棱錐的底面中心為O,內接正四棱錐的高為,

       由已知條件和平面幾何知識得,

       ∴,∴EE1,即,

       ∴,即;                 ……6分

       (Ⅱ)由(Ⅰ),

       令,則(舍去),或,

       且的取值變化如下表所示:

+

0

極大值

       ∴該內接正四棱柱當且僅當時,其體積取得最大值.  …………13分

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案