若曲線f(x,y)=0上存在兩個不同點處的切線重合,則稱這條切線為曲線的自公切線,下列方程的曲線有自公切線的是( 。
A、x2+y-1=0
B、|x|-
4-y2
+1=0
C、x2+y2-x-|x|-1=0
D、3x2-xy+1=0
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:綜合題,函數(shù)的性質(zhì)及應(yīng)用
分析:通過畫出函數(shù)圖象,觀察其圖象是否滿足在其上圖象上是否存在兩個不同點處的切線重合,從而確定是否存在自公切線,從而得到結(jié)論.
解答:解:A:x2+y-1=0,即y=1-x2,是拋物線,沒有自公切線;
B:對于方程|x|-
4-y2
+1=0,其表示的圖形為圖中實線部分,不滿足要求,故不存在.
C:x2+y2-x-|x|-1=0,由兩圓相交,可知公切線,滿足題意,故有自公切線;
D:3x2-xy+1=0,即y=3x+
1
x
是勾號函數(shù),沒有自公切線.
故選:C.
點評:正確理解新定義“自公切線”,正確畫出函數(shù)的圖象、數(shù)形結(jié)合的思想方法是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個平面封閉區(qū)域內(nèi)任意兩點距離的最大值稱為該區(qū)域的“直徑”,封閉區(qū)域邊界曲線的長度與區(qū)域直徑之比稱為區(qū)域的“周率”,下面四個平面區(qū)域(陰影部分)的周率從左到右依次記為T1,T2,T3,T4,則下列關(guān)系中正確的為( 。
A、
   T1>T4>T3
B、
  T3>T1>T2
C、
    T4>T2>T3
D、
   T3>T4>T1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A、B是拋物線y2=4x上的兩點,且OA⊥OB(O為坐標(biāo)原點),則直線AB一定經(jīng)過定點( 。
A、(1,0)
B、(2,0)
C、(3,0)
D、(4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=6x的焦點為F,準(zhǔn)線為l,P為拋物線上一點,PA丄l,垂足為A,如果△APF為正三角形,那么|PF|等于(  )
A、4
3
B、6
3
C、6
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
3
x3-
1
2
x2+
1
3
x+1在x=1處的切線的傾斜角為α,則
cos2α
sin2α+cos2α
的值是( 。
A、
8
3
B、
8
5
C、-
8
7
D、
8
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-3(a+1)x2+(3a2+6a+4)x,a∈R,則曲線y=f(x)在任意一點處切線的斜率最小值為(  )
A、-1
B、-
1
2
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x+2cosx在點(0,2)處的切線方程是(  )
A、y=x+2
B、y=-x+2
C、y=2x+2
D、y=-2x+2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設(shè)f(x)=min{x,x+2,10-x}(x≥0),則f(x)的最大值為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆寧夏高三上學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題

中,,,則的值為

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊答案