已知函數(shù)f(x)=x2-x,g(x)=lnx-f(x)f'(x)
(1)求g(x)的最大值及相應(yīng)x的值;
(2)對(duì)任意的正數(shù)x,恒有f(x)+f(
1
x
)≥(x+
1
x
)ln(m2-2m-2)
,求實(shí)數(shù)m的最大值.
分析:(1)寫出g(x)表達(dá)式,求導(dǎo)數(shù)g′(x),在定義域內(nèi)解不等式g′(x)>0,g′(x)<0可得g(x)的單調(diào)區(qū)間,由單調(diào)性可得其最大值,同時(shí)得相應(yīng)x值;
(2)f(x)+f(
1
x
)≥(x+
1
x
)ln(m2-2m-2)
可化為(x+
1
x
)2-2-(x+
1
x
)≥(x+
1
x
)ln(m2-2m-2)
,令x+
1
x
=t(t≥2)
,由①分離出m后轉(zhuǎn)化為求關(guān)于t的最小值,構(gòu)造函數(shù)用導(dǎo)數(shù)可求其最小值,再解關(guān)于m的不等式即可;
解答:解(1)g(x)=lnx-(x2-x)(2x-1)=lnx-2x3+3x2-x,
g′(x)=
1
x
-6x2+6x-1=
(1-x)(6x2+1)
x
,(x>0)
,
當(dāng)0<x<1時(shí),g'(x)>0;當(dāng)x>1時(shí),g'(x)<0,
∴g(x)在(0,1]上是增函數(shù),在[1,+∞)上是減函數(shù),
∴,當(dāng)x=1時(shí),g(x)取得最大值g(1)=0;
(2)f(x)+f(
1
x
)≥(x+
1
x
)ln(m2-2m-2)
,即(x2-x+
1
x2
-
1
x
)≥(x+
1
x
)ln(m2-2m-2)
,
可化為(x+
1
x
)2-2-(x+
1
x
)≥(x+
1
x
)ln(m2-2m-2)
①,
∵x>0,∴x+
1
x
≥2
(當(dāng)x=1時(shí)取到等號(hào)),
設(shè)x+
1
x
=t(t≥2)
,①可化為t2-2-t≥tln(m2-2m-2),即ln(m2-2m-2)≤t-
2
t
-1
當(dāng)t≥2時(shí)恒成立,
令h(t)=t-
2
t
-1,則h′(t)=1+
2
t2
>0,
∴h(t)在[2,+∞)上是增函數(shù),∴h(t)≥h(2)=0,于是ln(m2-2m-2)≤0,
解不等式0<m2-2m-2≤1,解得-1≤m<1-
3
,1+
3
<m≤3
,
∴m的最大值為3.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)在閉區(qū)間上的最值及函數(shù)恒成立問題,轉(zhuǎn)化為函數(shù)最值問題是解決恒成立問題的常用方法,要注意掌握.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案