20.函數(shù)y=f(x)的圖象向左平移$\frac{π}{12}$個單位后與函數(shù)y=cos($\frac{π}{2}$-2x)的圖象重合,則y=f(x)的解析式為(  )
A.y=sin(2x-$\frac{π}{2}$)B.y=sin(2x+$\frac{π}{6}$)C.y=sin(2x+$\frac{π}{3}$)D.y=sin(2x-$\frac{π}{6}$)

分析 由條件根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.

解答 解:由題意可得,把函數(shù)y=cos($\frac{π}{2}$-2x)=sin2x的圖象向右平移$\frac{π}{12}$個單位后,
得到函數(shù)f(x)=sin[2(x-$\frac{π}{12}$)]=sin(2x-$\frac{π}{6}$)的圖象,
故選:D.

點評 本題主要考查函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列判斷錯誤的是( 。
A.“|am|<|bm|”是“|a|<|b|”的充分不必要條件
B.若¬(p∧q)為真命題,則p,q均為假命題
C.命題“?x∈R,ax+b≤0”的否定是“?x∈R,ax+b>0”
D.若ξ~B(8,0.125),則Eξ=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)[x]表不超過實數(shù)x的最大整數(shù),又g(x)=$\frac{{a}^{x}}{{a}^{x}+1}$(a>0,a≠1),那么函數(shù)f(x)=[g(x)-$\frac{1}{2}$]+[g(-x)-$\frac{1}{2}$]的值域是{0,-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=x3-3x2+3x+1.判斷f(x)的單調(diào)性,并求其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.對甲、乙兩名同學(xué)的學(xué)習(xí)成績進(jìn)行抽樣分析,各抽5門功課,得到的觀測值如表:
8090857090
80100709080
問:(1)甲、乙的平均成績誰較好?
(2)誰的各門功課發(fā)展較平衡?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.等差數(shù)列{an}中,公差d=2,a1+a3+a5+…+a29=18,則a2+a4+a6+…+a30=(  )
A.20B.36C.48D.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.△ABC中,B=45°,b=x,a=2,若△ABC有兩解,則x的取值范圍是( 。
A.(2,+∞)B.(0,2)C.(2,2$\sqrt{2}$)D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,A=45°,B=60°,a=$\sqrt{2}$,則b=(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某人投籃一次投進(jìn)的概率為$\frac{2}{3}$,現(xiàn)在他連續(xù)投籃6次,且每次投籃相互之間沒有影響,那么他投進(jìn)的次數(shù)ξ服從參數(shù)為(6,$\frac{2}{3}$)的二項分布,記為ξ~B(6,$\frac{2}{3}$),計算 P(ξ=2)=( 。
A.$\frac{20}{243}$B.$\frac{8}{243}$C.$\frac{4}{729}$D.$\frac{4}{27}$

查看答案和解析>>

同步練習(xí)冊答案