已知函數(shù)f(x) =2x+1,x∈R.規(guī)定:給定一個(gè)實(shí)數(shù)x0,賦值x1= f(x0),若x1≤255,則繼續(xù)賦值x2=" f(x1)" …,以此類(lèi)推,若x n-1≤255,則xn= f(xn-1),否則停止賦值,如果得到xn后停止,則稱(chēng)賦值了n次(n∈N *).已知賦值k次后該過(guò)程停止,則x0的取值范圍是 
A.(2k-9 ,2 k-8]B.(2 k-8 -1, 2k-9-1]C.(28-k -1, 29-k-1]D.(27-k -1, 28-k-1]
C

提示1:由題意,可先解出x1,x2,x3,從中發(fā)現(xiàn)規(guī)律,猜想出xk=f(xk-1)=2xk-1-1=2kx0-2k-1-…-22-2-1=2kx0=2kx0-2k+1,再由題設(shè)條件xn-1≤257,則xn=f(xn-1),否則停止賦值,可得到2kx0-2k+1>257,且2k-1x0-2k-1+1≤257,解此二不等式即可得到x0的取值范圍選出正確選項(xiàng).
提示2:本題考查歸納推理,等比數(shù)列的求和公式,解題的特點(diǎn)是先列舉幾個(gè)特殊例子找出規(guī)律,從而利用規(guī)律得出結(jié)論,解答本題,理解賦值終止的條件是關(guān)鍵
解:由題意x1=f(x0)=2x0-1;
x2=f(x1)=2x1-1=2(2x0-1)-1=22x0-2-1;
x3=f(x2)=2x2-1=2(22x0-2-1)-1=23x0-22-2-1;
…,
xk=f(xk-1)=2xk-1-1=2kx0-2k-1-…-22-2-1=2kx0-=2kx0-2k+1;
令2kx0-2k+1>257,且2k-1x0-2k-1+1≤257,
解得28-k+1<x0≤29-k+1
故x0的取值范圍是(28-k+1,29-k+1]
故選C
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

觀察下列等式:根據(jù)上述規(guī)律寫(xiě)出第六個(gè)等式為                                                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在古希臘,畢達(dá)哥拉斯學(xué)派把,,,,,… 這些數(shù)叫做三角形數(shù).則
個(gè)三角形數(shù)為        (      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等差數(shù)列中,若,則有等式 成立,類(lèi)比上述性質(zhì),在等比數(shù)列中,若,則有等式                             .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等比數(shù)列{an}中,若a10=0,則有等式
a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立.類(lèi)比上述性質(zhì),相應(yīng)地,在等比數(shù)列{bn}中,若b9=1,則等式______________成立                

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

有一段演繹推理是這樣的:“直線平行于平面,則平行于平面內(nèi)所有直線;已知直線平面,直線平面,直線∥平面,則直線∥直線”的結(jié)論顯然是錯(cuò)誤的,這是因?yàn)?u>             

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義已知,,則   
(結(jié)果用,表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題


(本小題滿(mǎn)分12分)
設(shè)復(fù)數(shù),若,求實(shí)數(shù)的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知①正方形的對(duì)角線相等;②矩形的對(duì)角線相等;③正方形是矩形.根據(jù)”三段論”推理出一個(gè)結(jié)論。則這個(gè)結(jié)論是(     )
A.正方形的對(duì)角線相等B.矩形的對(duì)角線相等C.正方形是矩形 D.其

查看答案和解析>>

同步練習(xí)冊(cè)答案