用數(shù)學歸納法證明不等式:
1
n
+
1
n+1
+
1
n+2
+…+
1
n2
>1(n∈N*且n>1).
分析:直接利用數(shù)學歸納法的證明步驟證明不等式,(1)驗證n=2時不等式成立;(2)假設當n=k(k≥2)時成立,利用放縮法證明n=k+1時,不等式也成立.
解答:證明:(1)當n=2時,左邊=
1
2
+
1
3
+
1
4
=
13
12
>1
,∴n=2時成立(2分)
(2)假設當n=k(k≥2)時成立,即
1
k
+
1
k+1
+
1
k+2
+…+
1
k2
>1

那么當n=k+1時,左邊=
1
k+1
+
1
k+2
+
1
k+3
+…+
1
(k+1)2

=
1
k
+
1
k+1
+
1
k+2
+
1
k+3
+…+
1
k2+2k
+
1
(k+1)2
-
1
k

1+
1
k2+1
+
1
k2+2
+…+
1
(k+1)2
-
1
k


>1+(2k+1)•
1
(k+1)2
-
1
k
>1+
k2-k-1
k2+2k+1
>1
∴n=k+1時也成立(7分)
根據(jù)(1)(2)可得不等式對所有的n>1都成立(8分)
點評:本題是中檔題,考查數(shù)學歸納法的證明步驟,注意不等式的證明方法,放縮法的應用,考查邏輯推理能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(n)=1+
1
2
+
1
3
+…+
1
n
 (n∈N*),用數(shù)學歸納法證明不等式f(2n)>
n
2
時,f(2k+1)比f(2k)多的項數(shù)是
2k
2k

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明不等式
1
n+1
+
1
n+2
+…+
1
n+n
13
24
的過程中,由“k推導k+1”時,不等式的左邊增加了( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明不等式1+
1
2
+
1
4
+…+
1
2n-1
127
64
(n∈N*)成立,其初始值至少應取
8
8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明不等式2n>n2時,第一步需要驗證n0=( 。⿻r,不等式成立.

查看答案和解析>>

同步練習冊答案