對任意實數(shù)x,f(x)是x和x2-2中的較大者,則f(x)的最小值為________.

-1
分析:作出y=x和y=x2-2的圖象,求出其交點坐標,確定出f(x)的解析式,再求其最小值.
解答:解:x=x2-2時,x=-1或x=2,由圖象可知,
f(x)=,故f(x)的最小值為-1
故答案為:-1.
點評:本題考查分段函數(shù)的最值問題,注意數(shù)形結合思想解題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•晉中三模)若對任意的x∈A,y∈B,(A⊆R,B⊆R),有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關于實數(shù)x、y的廣義“距離”:
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出下列四個二元函數(shù):①f(x,y)=|x-y|;  ②f(x,y)=(x-y)2
f(x,y)=
x-y
; ④f(x,y)=x2+y2
能夠稱為關于實數(shù)x、y的廣義“距離”的函數(shù)的序號是
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a,b,c是三角形ABC的邊長,對任意實數(shù)x,f(x)=b2x2+(b2+c2-a2)x+c2有(  )
A、f(x)=0B、f(x)>0C、f(x)≥0D、f(x)<0

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年貴州省安順學院附中高三(上)第五次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

已知對任意實數(shù)x,有f(x)+f(-x)=0,g(x)-g(-x)=0,且當x>0時,f′(x)<0,g′(x)<0,則當x<0時,有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年黑龍江省鶴崗一中高二(下)期中數(shù)學試卷(文科)(解析版) 題型:選擇題

已知對任意實數(shù)x,有f(x)+f(-x)=0,g(x)-g(-x)=0,且當x>0時,f′(x)<0,g′(x)<0,則當x<0時,有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年陜西省榆林市神木中學高二(上)數(shù)學寒假作業(yè)4(文科)(解析版) 題型:選擇題

已知對任意實數(shù)x,有f(x)+f(-x)=0,g(x)-g(-x)=0,且當x>0時,f′(x)<0,g′(x)<0,則當x<0時,有( )
A.f′(x)>0,g′(x)>0
B.f′(x)>0,g′(x)<0
C.f′(x)<0,g′(x)>0
D.f′(x)<0,g′(x)<0

查看答案和解析>>

同步練習冊答案