已知定義在R上的奇函數(shù)f(x)=
-2x+b
2x+1+a

(1)求a、b的值;
(2)若不等式-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對(duì)一切實(shí)數(shù)x及m恒成立,求實(shí)數(shù)k的取值范圍;
(3)若函數(shù)g(x)是定義在R上的周期為2的奇函數(shù),且當(dāng)x∈(-1,1)時(shí),g(x)=f(x)-x,求方程g(x)=0的所有解.
(1)由于f(x)為R上的奇函數(shù),故 f(0)=0,得 b=1…(1分)
則 f(x)=
1-2x
2x+1+a

由 f(-1)=-f(1)得
1-
1
2
1+a
=-
1-2
4+a
,解得 a=2
a=2
b=1
…(4分)
(2)由(1)f(x)=
1-2x
2x+1+2
=-
1
2
+
1
2x+1

由 2x+1>1知 0<
1
2x+1
<1

則 -
1
2
<f(x)<
1
2
…(6分)
要使-m2+(k+2)m-
3
2
<f(x)<m2+2km+k+
5
2
對(duì)一切實(shí)數(shù)x及m恒成立
則需且只需 
-m2+(k+2)m-
3
2
≤-
1
2
m2+2km+k+
5
2
1
2
對(duì) m∈R恒成立
即 
m2-(k+2)m+1≥0
m2+2km+k+2≥0
對(duì) m∈R恒成立 …(8分)
只需 
1=(k+2)2-4≤0
2=(2k)2-4(k+2)≤0

解得-1≤k≤0…(9分)
(3)當(dāng)x∈(-1,1)時(shí)g(x)=f(x)-x=-
1
2
+
1
2x+1
-x

顯然
1
2x+1
及-x均為減函數(shù),故g(x)在(-1,1)上為減函數(shù) …(11分)
由于g(0)=0,故在(-1,1)內(nèi)g(x)=0有唯一根x=0
由于g(x)周期為2,由此有x∈(2k-1,2k+1)內(nèi)有唯 一根x=2k(k∈N)(1)…(12分)
綜合得x=2k(k∈N)為g(x)=0的根
又因?yàn)間(-1)=g(-1+2)=g(1)得-g(1)=g(1)
故g(1)=0,因此得g(2k+1)=0(k∈N)(2)…(13分)
綜合(1)(2)有g(shù)(x)=0的所有解為一切整數(shù) …(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤
π2
時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的奇函數(shù)f(x).當(dāng)x<0時(shí),f(x)=x2+2x.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)問:是否存在實(shí)數(shù)a,b(a≠b),使f(x)在x∈[a,b]時(shí),函數(shù)值的集合為[
1
b
1
a
]
?若存在,求出a,b;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:大連二十三中學(xué)2011學(xué)年度高二年級(jí)期末測試試卷數(shù)學(xué)(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆浙江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個(gè)不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知定義在R上的單調(diào)遞增奇函數(shù)以f(x),若當(dāng)0≤θ≤數(shù)學(xué)公式時(shí),f(cosθ+msinθ)+f(-2m-2)<0恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案