已知a、bc分別是△ABC三個(gè)內(nèi)角A、B、C的對(duì)邊.

(1)若△ABC面積為c=2,A=60°,求ab的值;

(2)若acosA=bcosB,試判斷△ABC的形狀,證明你的結(jié)論.

答案:
解析:

解:(1)由已知得bcsinA=bsin60°,

b=1.由余弦定理a2=b2+c2-2bccosA=3,

a=.

(2)由正弦定理得2RsinA=a,2RsinB=b

∴2RsinAcosA=2RsinBcosB,

即sin2A=sin2B,由已知A、B為三角形內(nèi)角,

A+B=90°或A=B.

∴△ABC為直角三角形或等腰三角形.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c分別是△ABC三個(gè)內(nèi)角A、B、C的對(duì)邊.
(1)若b2=ac,求角B的范圍.
(2)若acosA=bcosB,試判斷△ABC的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C所對(duì)的邊,若a=1,b=
3
,A+C=2B,則sinC=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c分別是△ABC的三個(gè)內(nèi)角A、B、C所對(duì)的邊,若
cosB
cosC
=-
b
2a+c
,則B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC中角A,B,C的對(duì)邊,且sin2A+sin2C-sin2B=sinAsinC.
 (1)求角B的大;
 (2)若c=3a,求tanA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,且滿足2asinB-
3
b=0.
(Ⅰ)求角A的大;
(Ⅱ)當(dāng)A為銳角時(shí),求函數(shù)y=
3
sinB+sin(C-
π
6
)的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案