12.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個(gè)焦點(diǎn)與拋物線${y^2}=4\sqrt{3}x$的焦點(diǎn)重合,長(zhǎng)軸長(zhǎng)等于圓x2+y2-2x-15=0的半徑,則橢圓C的方程為( 。
A.$\frac{x^2}{4}+\frac{y^2}{3}=1$B.$\frac{x^2}{16}+\frac{y^2}{12}=1$C.$\frac{x^2}{4}+{y^2}=1$D.$\frac{x^2}{16}+\frac{y^2}{4}=1$

分析 求出拋物線的焦點(diǎn)坐標(biāo),圓的半徑,然后求解橢圓的a,b,即可得到橢圓方程.

解答 解:橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的一個(gè)焦點(diǎn)與拋物線${y^2}=4\sqrt{3}x$的焦點(diǎn)重合,可得c=$\sqrt{3}$,
長(zhǎng)軸長(zhǎng)等于圓x2+y2-2x-15=0的半徑,a=2,則b=1,
所求橢圓方程為:$\frac{x^2}{4}+{y^2}=1$.
故選:C.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì),橢圓方程的求法,拋物線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.設(shè)A,B是兩個(gè)非空集合,定義集合A-B={x|x∈A且x∉B}.若A={x∈N|0≤x≤5},B={x|x2-7x+10<0},則A-B=( 。
A.{0,1}B.{1,2}C.{0,1,2}D.{0,1,2,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.下列命題推斷錯(cuò)誤的是(  )
A.命題“若x=y,則sinx=siny”的逆否命題為真命題
B.若p且q為假命題,則p,q均為假命題
C.“x=-1”是“x2-5x-6=0”的充分不必要條件
D.命題p:存在x0∈R,使得x02+x0+1<0,則非p:任意x∈R,都有x2+x+1≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.在區(qū)間[-2,3]中任取一個(gè)數(shù)m,則使“雙曲線$\frac{{x}^{2}}{{m}^{2}-1}$-$\frac{{y}^{2}}{4-m}$=1的離心率大于$\sqrt{3}$的概率是( 。
A.$\frac{7}{10}$B.$\frac{3}{10}$C.$\frac{1}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知點(diǎn)G(5,4),圓C1:(x-1)2+(y-4)2=25,過(guò)點(diǎn)G的動(dòng)直線l與圓C1,相交于兩點(diǎn)E、F,線段EF的中點(diǎn)為C.
(Ⅰ)求點(diǎn)C的軌跡C2的方程;
(Ⅱ)若過(guò)點(diǎn)A(1,0)的直線l1:kx-y-k=0,與C2相交于兩點(diǎn)P、Q,線段PQ的中點(diǎn)為M,l1與l2:x+2y+2=0的交點(diǎn)為N,求證:|AM|•|AN|為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=log3|x-t|是偶函數(shù),記$a=f({{{log}_{0.3}}4}),b=f({{π^{1.5}}}),c=f({2-t})$則a,b,c的大小關(guān)系為( 。
A.a<c<bB.a<b<cC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.?dāng)?shù)列{an}各項(xiàng)均為正數(shù),且滿足a1=1,$\sqrt{\frac{1}{a_n^2}+3}=\sqrt{\frac{1}{{a_{n+1}^2}}}$.記${b_n}=\frac{1}{{a_n^2a_{n+1}^2}}$,數(shù)列{bn}前n項(xiàng)的和為Sn,若Sn<t對(duì)任意的n∈N*恒成立,則實(shí)數(shù)t的取值范圍是$[{\frac{1}{3},+∞})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在投籃測(cè)試中,每人投3次,其中至少有兩次投中才能通過(guò)測(cè)試.已知某同學(xué)每次投籃投中的概率為0.6,且各次投籃是否投中相互獨(dú)立,則該同學(xué)能通過(guò)測(cè)試的概率為( 。
A.0.352B.0.432C.0.36D.0.648

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中記載了公元前344年商鞅制造一種標(biāo)準(zhǔn)量器-商鞅銅方升,其三視圖(單位:寸)如圖所示,若π取3,其體積為12.6(立方寸),則圖中x的為(  )
A.2.5B.3C.3.2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案