設F1,F2為橢圓+y2=1的左、右焦點,過橢圓中心任作一直線與橢圓交于P,Q兩點,當四邊形PF1QF2的面積最大時,·的值等于(  )
A.0B.2C.4D.-2
D
【思路點撥】數(shù)形結合利用幾何法求解.
易知當P,Q分別在橢圓短軸端點時,四邊形PF1QF2的面積最大,
此時F1(-,0),F2(,0),不妨設P(0,1),
=(-,-1),=(,-1),
·=-2.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知A,B分別是橢圓C1:+=1的左、右頂點,P是橢圓上異于A,B的任意一點,Q是雙曲線C2:-=1上異于A,B的任意一點,a>b>0.
(1)若P(,),Q(,1),求橢圓C1的方程;
(2)記直線AP,BP,AQ,BQ的斜率分別是k1,k2,k3,k4,求證:k1·k2+k3·k4為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,焦點在軸上且過點,離心率是
(1)求橢圓的標準方程;
(2)直線過點且與橢圓交于,兩點,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知方程=1表示焦點在y軸上的橢圓,則實數(shù)k的取值范圍是(  )
A.B.(1,+∞)C.(1,2)D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設直線l:2x+y-2=0與橢圓x2+=1的交點為A,B,點P是橢圓上的動點,則使得△PAB的面積為的點P的個數(shù)為   .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點P在定圓O的圓內或圓周上,動圓C過點P與定圓O相切,則動圓C的圓心軌跡可能是(  )
A.圓或橢圓或雙曲線
B.兩條射線或圓或拋物線
C.兩條射線或圓或橢圓
D.橢圓或雙曲線或拋物線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過橢圓+=1(a>b>0)的左焦點F1作x軸的垂線交橢圓于點P,F2為右焦點,若∠F1PF2=60°,則橢圓的離心率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的兩個焦點分別為F1,F(xiàn)2,離心率為,且過點(2,).
(1)求橢圓C的標準方程;
(2)M,N,P,Q是橢圓C上的四個不同的點,兩條都不和x軸垂直的直線MN和PQ分別過點F1,F(xiàn)2,且這兩條直線互相垂直,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓和雙曲線有相同的焦點是它們的一個交點,則的形狀是(   )
A.銳角三角形B.直角三角形
C.鈍角三角形D.隨的變化而變化

查看答案和解析>>

同步練習冊答案