已知θ為三角形△ABC內(nèi)角,且sinθ+cosθ=m,若m∈(0,1),則關(guān)于△ABC的形狀的判斷,正確的是( 。
A、直角三角形B、銳角三角形C、鈍角三角形D、三種形狀都有可能
分析:利用同角平方關(guān)系可得,m2=1+2sinθcosθ,結(jié)合m∈(0,1)可得sinθcosθ<0,從而可得θ的取值范圍,進(jìn)而可判斷三角形的形狀.
解答:解:∵sinθ+cosθ=m,
∴m2=(sinθ+cosθ)2=1+2sinθcosθ
∵0<m<1∴0<m2<1
∴0<2sinθcosθ+1<1,-
1
2
<sinθcosθ<0
∵θ為三角形△ABC內(nèi)角,∴sinθ>0,cosθ<0
θ為鈍角,即三角形△ABC為鈍角三角形
故選:C
點(diǎn)評(píng):本題主要考查了利用同角平方關(guān)系的應(yīng)用,其關(guān)鍵是變形之后從sinθcosθ的符號(hào)中判斷θ的取值范圍,屬于三角函數(shù)基本技巧的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等腰直角三角形ABC的斜邊為AB,以點(diǎn)A為中心、點(diǎn)B為焦點(diǎn)作橢圓,若直角頂點(diǎn)C在該橢圓上,橢圓的離心率為e,則e2等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC為等邊三角形,AB=2,設(shè)點(diǎn)P,Q滿足
AP
AB
,
AQ
=(1-λ)
AC
,λ∈R
,若
BQ
CP
=-
3
2
,則λ=
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知P為三角形ABC內(nèi)部任一點(diǎn)(不包括邊界),且滿足(
PB
-
PA
)(
PB
+
PA
-2
PC
)
=
AB
(
CB
+
CA
) =0
;即,則△ABC一定為(  )
A、直角三角形
B、等邊三角形
C、等腰直角三角形
D、等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)全解題庫(國標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044

已知O為三角形ABC所在平面內(nèi)一點(diǎn),且滿足OA2BC2OB2CA2,試用向量方法證明ABOC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P為三角形ABC內(nèi)部任一點(diǎn)(不包括邊界),且滿足(
PB
-
PA
)(
PB
+
PA
-2
PC
)
=
AB
(
CB
+
CA
) =0
;即,則△ABC一定為( 。
A.直角三角形B.等邊三角形
C.等腰直角三角形D.等腰三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案