已知函數(shù)f(x)=xlnx+1.
(1)求函數(shù)f(x)的極值點(diǎn);
(2)若直線l過(guò)點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的斜率.
分析:(1)求導(dǎo)函數(shù),確定函數(shù)的單調(diào)性,即可求函數(shù)f(x)的極值點(diǎn);
(2)設(shè)切點(diǎn)坐標(biāo)為(a,b),則b=alna+1,切線的斜率為lna+1,利用直線l過(guò)點(diǎn)(0,-1),可得直線的斜率,從而可求出切點(diǎn)的坐標(biāo),即可求直線l的斜率.
解答:解:(1)求導(dǎo)函數(shù),可得f′(x)=lnx+1,x>0.…(2分)
由f′(x)=lnx+1>0,可得x>
1
e
;f′(x)=lnx+1<0,可得0<x<
1
e
,
所以f(x)在(0,
1
e
)上單調(diào)遞減,在(
1
e
,+∞)上單調(diào)遞增.…(4分)
所以x=
1
e
是函數(shù)f(x)的極小值點(diǎn),極大值點(diǎn)不存在.…(6分)
(2)設(shè)切點(diǎn)坐標(biāo)為(a,b),
則b=alna+1,切線的斜率為lna+1,
又切線l過(guò)點(diǎn)(0,-1),所以
b+1
a
=lna+1
 …(9分)
所以b+1=a(lna+1),
所以alna+1+1=a(lna+1),所以a=2,
所以直線l的斜率為1+ln2…(12分)
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)知識(shí)的運(yùn)用,考查函數(shù)的單調(diào)性與極值,考查導(dǎo)數(shù)的幾何意義,求出切線的斜率是關(guān)鍵,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對(duì)任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案