兩個(gè)二次函數(shù)f(x)=x2+bx+c與g(x)=-x2+2x+d的圖象有唯一的公共點(diǎn)P(1,-2).
(Ⅰ)求b,c,d的值;
(Ⅱ)設(shè)F(x)=(f(x)+m)•g′(x),若F(x)在R上是單調(diào)函數(shù),求m的范圍,并指出是單調(diào)遞增函數(shù),還是單調(diào)遞減函數(shù).
分析:(I)由題意可得(1,-2)為兩拋物線的頂點(diǎn),結(jié)合二次函數(shù)的性質(zhì)可求b,c,d
(II)由(I)可求f(x),g(x),代入可求F(x)=(f(x)+m)•g′(x),對(duì)函數(shù)F(x)求導(dǎo),然后結(jié)合二次函數(shù)的性質(zhì)可判斷F‘(x)的正負(fù),從而可判斷函數(shù)的單調(diào)性
解答:解:(I)由題意可得(1,-2)為兩拋物線的頂點(diǎn)
g(1)=1+d=-2
-
1
2
b=1
4c-b2
4
=1

∴d=-3,b=-2,c=2
(II)由(I)可得f(x)=x2-2x+2,g(x)=-x2+2x-3
∴F(x)=(f(x)+m)•g′(x)
=(x2-2x+2+m)(-2x+2)
∵F′(x)=-6x2+12x-(2m+8)
∵F(x)在R上是單調(diào)函數(shù),
∴F′(x)=-6x2+12x-(2m+8)≤0恒成立
∴△=144-24(2m+8)≤0
∴m≥-1
函數(shù)是單調(diào)遞減的函數(shù)
點(diǎn)評(píng):本題主要考查了二次函數(shù)的對(duì)稱(chēng)性、函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系的應(yīng)用,解題的關(guān)鍵是熟練應(yīng)用二次函數(shù)的性質(zhì)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

兩個(gè)二次函數(shù)f(x)=ax2+bx+c(a≠0)與g(x)=bx2+ax+c(b≠0)的圖象只可能是( 。
A、精英家教網(wǎng)B、精英家教網(wǎng)C、精英家教網(wǎng)D、精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省舟山市岱山縣大衢中學(xué)高三(上)10月月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

兩個(gè)二次函數(shù)f(x)=x2+bx+c與g(x)=-x2+2x+d的圖象有唯一的公共點(diǎn)P(1,-2).
(Ⅰ)求b,c,d的值;
(Ⅱ)設(shè)F(x)=(f(x)+m)•g′(x),若F(x)在R上是單調(diào)函數(shù),求m的范圍,并指出是單調(diào)遞增函數(shù),還是單調(diào)遞減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶八中高三(下)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

兩個(gè)二次函數(shù)f(x)=x2+bx+c與g(x)=-x2+2x+d的圖象有唯一的公共點(diǎn)P(1,-2).
(Ⅰ)求b,c,d的值;
(Ⅱ)設(shè)F(x)=(f(x)+m)•g′(x),若F(x)在R上是單調(diào)函數(shù),求m的范圍,并指出是單調(diào)遞增函數(shù),還是單調(diào)遞減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)專(zhuān)項(xiàng)復(fù)習(xí):二次函數(shù)(解析版) 題型:選擇題

兩個(gè)二次函數(shù)f(x)=ax2+bx+c(a≠0)與g(x)=bx2+ax+c(b≠0)的圖象只可能是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案