方程 |x-3|=lgx根的個(gè)數(shù)是(    )

A、0     B、1      C、2       D、3

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=
3
+3cosθ
y=1+3sinθ
,(θ為參數(shù)),以O(shè)x為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為pcos(θ+
π
6
)=0

(1)寫出直線l的直角坐標(biāo)方程和圓C的普通方程;
(2)求圓C截直線l所得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=
3
+
1
2
t
y=7+
3
2
t
(t為參數(shù)),曲線C的參數(shù)方程為
x=4cosθ
y=4sinθ
(θ為參數(shù)).
(I)將曲線C的參數(shù)方程轉(zhuǎn)化為普通方程;
(II)若直線l與曲線C相交于A、B兩點(diǎn),試求線段AB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C1、拋物線C2的焦點(diǎn)均在x軸上,C1的中心和C2的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:
 x  3 -2  4  
2
 
3
 y -2
3
 0 -4  
2
2
-
1
2
(1)求C1、C2的標(biāo)準(zhǔn)方程;
(2)設(shè)直線l與橢圓C1交于不同兩點(diǎn)M、N,且
OM
ON
=0
,請問是否存在這樣的直線l過拋物線C2的焦點(diǎn)F?若存在,求出直線l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•咸安區(qū)模擬)過點(diǎn)M(1,2)的直線l與圓C:(x-3)2+(y-4)2=25交于A,B兩點(diǎn),C為圓心,當(dāng)∠ACB最小時(shí),直線l的方程是
x+y-3=0
x+y-3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•崇明縣二模)(理)若已知曲線C1方程為x2-
y2
8
=1(x≥0,y≥0)
,圓C2方程為(x-3)2+y2=1,斜率為k(k>0)直線l與圓C2相切,切點(diǎn)為A,直線l與曲線C1相交于點(diǎn)B,|AB|=
3
,則直線AB的斜率為( 。

查看答案和解析>>

同步練習(xí)冊答案