【答案】
分析:分析4個命題,對于①,在用特殊值法,將x=-3代入f(x+6)=f(x)+f(3)中,變形可得f(-3)=0,結(jié)合函數(shù)的奇偶性可得f(3)=f(-3)=0,可得①正確;對于②,結(jié)合①的結(jié)論可得f(x+6)=f(x),即f(x)是以6為周期的函數(shù),結(jié)合函數(shù)的奇偶性可得f(x)的一條對稱軸為y軸,即x=0,可得直線x=-6也是函數(shù)y=f(x)的一條對稱軸,可得②正確;對于③,由題意可得f(x)在[0,3]上為單調(diào)增函數(shù),結(jié)合函數(shù)是偶函數(shù),可得f(x)在[-3,0]上為減函數(shù),又由f(x)是以6為周期的函數(shù),分析函數(shù)y=f(x)在區(qū)間[-9,-6]的單調(diào)性可得③錯誤;對于④,由①可得,f(3)=f(-3)=0,又由f(x)是以6為周期的函數(shù),則f(-9)=f(9)=0,即函數(shù)y=f(x)在區(qū)間[-9,9]上有四個零點,④正確;綜合可得答案.
解答:解:根據(jù)題意,依次分析命題,
對于①,在f(x+6)=f(x)+f(3)中,令x=-3可得,f(3)=f(-3)+f(3),即f(-3)=0,
又由函數(shù)y=f(x)是R上偶函數(shù),則f(3)=f(-3)=0,則①正確;
對于②,由①可得,f(3)=0,又由f(x+6)=f(x)+f(3),
則有f(x+6)=f(x),即f(x)是以6為周期的函數(shù),
又由函數(shù)y=f(x)是R上偶函數(shù),即f(x)的一條對稱軸為y軸,即x=0,
則直線x=-6也是函數(shù)y=f(x)的一條對稱軸,②正確;
對于③,由當(dāng)x
1,x
2∈[0,3],都有
>0,可得f(x)在[0,3]上為單調(diào)增函數(shù),
又由函數(shù)y=f(x)是R上偶函數(shù),則f(x)在[-3,0]上為減函數(shù),
又由f(x)是以6為周期的函數(shù),則函數(shù)y=f(x)在區(qū)間[-9,-6]上為減函數(shù),③錯誤;
對于④,由①可得,f(3)=f(-3)=0,
又由f(x)是以6為周期的函數(shù),則f(-9)=f(-3)=0,f(9)=f(3)=0,
即函數(shù)y=f(x)在區(qū)間[-9,9]上有四個零點,④正確;
正確的命題為①②④;
故選C.
點評:本題考查抽象函數(shù)的應(yīng)用,涉及函數(shù)奇偶性,單調(diào)性的應(yīng)用;關(guān)鍵是根據(jù)題意,分析出f(x)的周期性、單調(diào)性以及f(3)的值.