如果滿足,且,那么下列選項不恒成立的是(    ).

(A)     (B)     (C)    (D)

 

【答案】

B

【解析】

試題分析:,故,由不等式的性質(zhì)知A,C,D都恒成立,只有B不恒成立,故選B.

考點:不等式的性質(zhì).

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面一段文字:已知數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1=2,則易知通項an=2n-1,前n項的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京模擬)如圖,一個半徑為10米的水輪按逆時針方向每分鐘轉(zhuǎn)4圈.記水輪上的點P到水面的距離為d米(P在水面下則d為負(fù)數(shù)),如果d(米)與時間t(秒)之間滿足關(guān)系式:d=Asin(ωt+φ)+k (A>0 , ω>0,-
π
2
<φ<
π
2
)
,且當(dāng)P點從水面上浮現(xiàn)時開始計算時間,那么以下結(jié)論中錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

閱讀下面一段文字:已知數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1=2,則易知通項an=2n-1,前n項的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:閱讀理解

(本小題滿分14分)

閱讀下面一段文字:已知數(shù)列的首項,如果當(dāng)時,,則易知通項,前項的和. 將此命題中的“等號”改為“大于號”,我們得到:數(shù)列的首項,如果當(dāng)時,,那么,且. 這種從“等”到“不等”的類比很有趣。由此還可以思考:要證,可以先證,而要證,只需證). 結(jié)合以上思想方法,完成下題:

已知函數(shù),數(shù)列滿足,,若數(shù)列的前項的和為,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省部分重點中學(xué)聯(lián)考高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

閱讀下面一段文字:已知數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1=2,則易知通項an=2n-1,前n項的和Sn=n2.將此命題中的“等號”改為“大于號”,我們得到:數(shù)列{an}的首項a1=1,如果當(dāng)n≥2時,an-an-1>2,那么an>2n-1,且Sn>n2.這種從“等”到“不等”的類比很有趣.由此還可以思考:要證Sn>n2,可以先證an>2n-1,而要證an>2n-1,只需證an-an-1>2(n≥2).結(jié)合以上思想方法,完成下題:
已知函數(shù)f(x)=x3+1,數(shù)列{an}滿足a1=1,an+1=f(an),若數(shù)列{an}的前n項的和為Sn,求證:Sn≥2n-1.

查看答案和解析>>

同步練習(xí)冊答案