過拋物線y2=4x的焦點作直線交拋物線于A(x1,y1),B(x2,y2)兩點,若|AB|=12,那么x1+x2=
10
10
分析:由過拋物線 y2=4x 的焦點的直線交拋物線于A(x1,y1)B(x2,y2)兩點,得|AB|=x1+x2+2=12,由此易得答案.
解答:解:由題意,p=2,故拋物線的準(zhǔn)線方程是x=-1,
∵過拋物線 y2=4x 的焦點的直線交拋物線于A(x1,y1)B(x2,y2)兩點,
∴|AB|=x1+x2+2=12,解得x1+x2=10,
故答案為:10.
點評:本題考查拋物線的簡單性質(zhì),解題的關(guān)鍵是理解到焦點的距離與到準(zhǔn)線的距離相等,由此關(guān)系將求弦長的問題轉(zhuǎn)化為求點到線的距離問題,大大降低了解題難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

傾斜角為
π
4
的直線過拋物線y2=4x的焦點且與拋物線交于A,B兩點,則|AB|=(  )
A、
13
B、8
2
C、16
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F引兩條互相垂直的直線AB、CD交拋物線于A、B、C、D四點.
(1)求當(dāng)|AB|+|CD|取最小值時直線AB、CD的傾斜角的大小
(2)求四邊形ACBD的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交該拋物線于A,B兩點,O為坐標(biāo)原點.若|AF|=3,則△AOB的面積為
3
2
2
3
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,點O是坐標(biāo)原點,若|AF|=5,則△AOB的面積為( 。
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,A、B兩點在準(zhǔn)線l上的射影分別為M.N,則∠MFN=(  )

查看答案和解析>>

同步練習(xí)冊答案