21.已知橢圓C1:=1,拋物線C2:(y-m)2=2px(p>0),且C1、C2的公共弦AB過橢圓C1的右焦點(diǎn).

(Ⅰ)當(dāng)AB⊥x軸時(shí),求m、p的值,并判斷拋物線C2的焦點(diǎn)是否在直線AB上;

(Ⅱ)是否存在m、p的值,使拋物線C2的焦點(diǎn)恰在直線AB上?若存在,求出符合條件的m、p的值;若不存在,請說明理由.

21.解  (Ⅰ)當(dāng)AB⊥x軸時(shí),點(diǎn)A、B關(guān)于x軸對稱,所以m=0,直線AB的方程為x=1,從而點(diǎn)A的坐標(biāo)為(1,)或(1,-).

 

因?yàn)辄c(diǎn)A在拋物線上,所以=2p,即p=.此時(shí)C2的焦點(diǎn)坐標(biāo)為(,0),該焦點(diǎn)不在直線AB上.

(Ⅱ)解法一  假設(shè)存在m、p的值使C2的焦點(diǎn)恰在直線AB上,由(Ⅰ)知直線AB的斜率存在,故可設(shè)直線AB的方程為y=k(x-1).

消去y得(3+4k2)x2-8k2x+4k2-12=0.                 ……①

設(shè)A、B的坐標(biāo)分別為(x1,y1)、(x2,y2),則x1、x2是方程①的兩根,x1+x2=.

消去y得

(kx-k-m)2=2px.                                               ……②

因?yàn)镃2的焦點(diǎn)F′(,m)在y=k(x-1)上,

所以m=k(-1),即m+k=.代入②有(kx-2=2px.

即k2x2-p(k2+2)x+=0.                                  ……③

由于x1、x2也是方程③的兩根,所以x1+x2=.

從而.               ……④

又AB過C1、C2的焦點(diǎn),

所以|AB|=(x1+)+(x2+)=x1+x2+p=(2-x1)+(2-),

則p=4-(x1+x2)=4-=.                    ……⑤

由④、⑤得=.

即k4-5k2-6=0.解得k2=6.

于是k=±,p=.

因?yàn)镃2的焦點(diǎn)F′(,m)在直線y=±(x-1)上,所以m=±-1).

即m=或m=-.

由上知,滿足條件的m、p存在,且m=或m=-,p=.

解法二  設(shè)A、B的坐標(biāo)分別為(x1,y1)、(x2,y2),

因?yàn)锳B即過C1的右焦點(diǎn)F(1,0),又過C2的焦點(diǎn)F′(,m),

所以|AB|=(x1+)+(x2+)=x1+x2+p=(2-x1)+(2-x2).

即x1+x2=(4-p).                                              ……①

由(Ⅰ)知x1≠x2,p≠2,于是直線AB的斜率k=,

且直線AB的方程是y=(x-1).                                            ……②

所以y1+y2=(x1+x2-2)=.                           ……③

又因?yàn)?IMG align="middle" height=53 src="http://thumb.zyjl.cn/pic1/1898/img/06/71/87/189806718710016587/47.gif" width=115 align=absMiddle v:shapes="_x0000_i1204">,所以3(x1+x2)+4(y1+y2)·=0.     ……④

將①、②、③代入④得m2=.                        ……⑤

因?yàn)?IMG align="middle" height=51 src="http://thumb.zyjl.cn/pic1/1898/img/06/71/87/189806718710016587/50.gif" width=121 align=absMiddle v:shapes="_x0000_i1207">,所以y1+y2-2m=2p                   ……⑥

將②、③代入⑥得m2=.                                 ……⑦

由⑤、⑦得=.即3p2+20p-32=0.

解得p=或p=-8(舍去).

將p=代入⑤得m2=,所以m=或m=-.

由上知,滿足條件的m、p存在,且m=或m=-,p=.

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1:=1,其左準(zhǔn)線為l1,右準(zhǔn)線為l2,一條以原點(diǎn)為頂點(diǎn),l1為準(zhǔn)線的拋物線C2交l2于A、B兩點(diǎn),則|AB|等于(    )

A.8                    B.12                    C.9                    D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C1:=1,其左準(zhǔn)線為l1,右準(zhǔn)線為l2,一條以原點(diǎn)為頂點(diǎn),l1為準(zhǔn)線的拋物線C2l2于A、B兩點(diǎn),則|AB|等于(    )

A.2              B.4            C.8            D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題

已知橢圓C1:+=1(a>b>0)的右頂點(diǎn)為A(1,0),C1的焦點(diǎn)且垂直長軸的弦長為1.

(1)求橢圓C1的方程;

(2)設(shè)點(diǎn)P在拋物線C2:y=x2+h(hR),C2在點(diǎn)P處的切線與C1交于點(diǎn)M,N.當(dāng)線段AP的中點(diǎn)與MN的中點(diǎn)的橫坐標(biāo)相等時(shí),h的最小值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy,已知橢圓C1:+=1(a>b>0)的左焦點(diǎn)為F1(-1,0),且點(diǎn)P(0,1)C1.

(1)求橢圓C1的方程;

(2)設(shè)直線l同時(shí)與橢圓C1和拋物線C2:y2=4x相切,求直線l的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年人教版高考數(shù)學(xué)文科二輪專題復(fù)習(xí)提分訓(xùn)練24練習(xí)卷(解析版) 題型:選擇題

已知橢圓C1:+=1(a>b>0)與雙曲線C2:x2-=1有公共的焦點(diǎn),C2的一條漸近線與以C1的長軸為直徑的圓相交于A,B兩點(diǎn).C1恰好將線段AB三等分,(  )

(A)a2= (B)a2=13

(C)b2= (D)b2=2

 

查看答案和解析>>

同步練習(xí)冊答案