已知集合A={x|x2-3x-10≤0},B={x|m+1≤x≤2m-1},若A?B且B≠∅,求實(shí)數(shù)m的取值范圍.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:計(jì)算題,集合
分析:化簡(jiǎn)集合A,由A?B且B≠∅求實(shí)數(shù)m的取值范圍.
解答: 解:集合A={x|x2-3x-10≤0}=[-2,5],
∵B≠∅,
∴m+1≤2m-1,
∴m≥2,
∵A?B,
∴2m-1≤5,
∴m≤3,
故實(shí)數(shù)m的取值范圍為[2,3].
點(diǎn)評(píng):本題考查了集合的化簡(jiǎn)與集合關(guān)系的應(yīng)用,可借助數(shù)軸完成,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義集合A,B的一種運(yùn)算:A*B={x|x=x1+x2其中x1∈A,x2∈B},若A={1,2,3},B={1,2,3},則A*B中的所有元素?cái)?shù)字之和為( 。
A、12B、14C、18D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a-
2
2x+1
(a∈R)
(Ⅰ)判斷函數(shù)f(x)在R上的單調(diào)性,并用單調(diào)函數(shù)的定義證明;
(Ⅱ)是否存在實(shí)數(shù)a使函數(shù)f(x)為奇函數(shù)?若存在,求出a的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)的定義域?yàn)閇-2,2],g(x)=f(x-1)-f(3-2x).
(1)求g(x)的定義域;
(2)若f(x)在定義域上是單調(diào)增函數(shù),求不等式g(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2-2x,x≥3
2x+1,x<3
則f[f(1)]等于( 。
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,陰影部分表示的集合是( 。
A、B∩[∁U (A∪C)]
B、(A∪B)∪(B∪C)
C、(A∪C)∩(∁UB)
D、[∁U (A∩C)]∪B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=g(x),x∈[-1+m,1+m]為奇函數(shù),則函數(shù)f(x)=x4+mx+5的奇偶性為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)非空集合S={x|m≤x≤l}滿足:當(dāng)x∈S時(shí),有x2∈S.
①若m=1,求集合S;
②若m=-
1
2
,求l的范圍;
③若l=
1
2
,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是R上的偶函數(shù),且在(0,+∞)上是減函數(shù),若x1<0且x1+x2>0,則f(-x1
 
f(-x2

查看答案和解析>>

同步練習(xí)冊(cè)答案