已知向量m=(cosx+sinxcosx),n=(cosx-sinx,2sinx),設(shè)函數(shù)(x) =m · n

(1)求函數(shù)(x)的最小正周期T;

(2)若角A是銳角三角形的最大內(nèi)角,求(A)的取值范圍.

 

 

 

 

 

 

【答案】

 解:(1)由已知有f (x)=(cosx+sinx)(cosx-sinx)+·2sinx

                                        

,………………………………………6分

于是T,即f(x)的最小正周期為π.  ………………………………8分

(2)由已知有 A,

∴  -1<≤1.

(A)的取值范圍是.………………………………………………12分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(cos θ,sin θ)
n
=(
2
-sin θ,cos θ)
,θ∈(π,2π),且|
m
+
n
|=
8
2
5
,求sinθ和cos(
θ
2
+
π
8
)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(cosα-
2
3
,-1),
n
=(sinα,1)
m
n
α∈(-
π
2
,0)

(1)求sinα-cosα的值.
(2)求
1+sin2α+cos2α
1+tanα
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(cosωx,sinωx)
,
n
=(cosωx,
3
cosωx)
,設(shè)函數(shù)f(x)=
m
n

(1)若f(x)的最小正周期是2π,求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)的圖象的一條對稱軸是x=
π
6
,(0<ω<2),求f(x)的周期和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(cosα-
2
3
,-1),
n
=(sinα,1),
m
n
為共線向量,且α∈[-π,0].
(Ⅰ)求sinα+cosα的值
(Ⅱ)求
sin2α
sinα-cosα
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(cosθ,sinθ),
n
=(1-
3
sinθ,
3
cosθ)
,θ∈(0,π),若|
m
+
n
|=2
2
,求cos(
θ
2
+
π
6
)
的值.

查看答案和解析>>

同步練習冊答案