【題目】已知函數(shù),
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)當(dāng),討論的零點(diǎn)個數(shù);
【答案】(1)單調(diào)遞減區(qū)間為:,;單調(diào)遞增區(qū)間為:,;(2)當(dāng)時,在上有2個零點(diǎn),當(dāng)時,在上無零點(diǎn).
【解析】
(1)先判斷為偶函數(shù),再利用導(dǎo)數(shù)研究上的單調(diào)性,根據(jù)偶函數(shù)的對稱性,得到答案.(2)先求出導(dǎo)函數(shù),然后對按照,,進(jìn)行分類討論,當(dāng),得到在單調(diào)遞增,結(jié)合,判斷出此時無零點(diǎn),當(dāng),得到單調(diào)性,結(jié)合,的值,以及偶函數(shù)的性質(zhì),得到零點(diǎn)個數(shù).
解:∵∴為偶函數(shù),
只需先研究
當(dāng),,當(dāng),,
所以在單調(diào)遞增,在,單調(diào)遞減
所以根據(jù)偶函數(shù)圖像關(guān)于軸對稱,
得在單調(diào)遞增,在單調(diào)遞減,
.故單調(diào)遞減區(qū)間為:,;單調(diào)遞增區(qū)間為:,
(2)
①時,在恒成立
∴在單調(diào)遞增
又,所以在上無零點(diǎn)
②時,,
使得,即.
又在單調(diào)遞減,
所以,,,
所以,單調(diào)遞增,,單調(diào)遞減,
又,
(i),即時
在上無零點(diǎn),
又為偶函數(shù),所以在上無零點(diǎn)
(ii),即
在上有1個零點(diǎn),
又為偶函數(shù),所以在上有2個零點(diǎn)
綜上所述,當(dāng)時,在上有2個零點(diǎn),當(dāng)時,在上無零點(diǎn).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面,,,的中點(diǎn)為.
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某條公共汽車線路收支差額與乘客量的函數(shù)關(guān)系如下圖所示(收支差額=車票收入-支出費(fèi)用),由于目前本條線路虧損,公司有關(guān)人員提出了兩條建議:建議(1)不改變車票價格,減少支出費(fèi)用;建議(2)不改變支出費(fèi)用,提高車票價格.下面給出的四個圖形中,實(shí)線和虛線分別表示目前和建議后的函數(shù)關(guān)系,則( )
A.①反映建議(2),③反映建議(1)B.①反映建議(1),③反映建議(2)
C.②反映建議(1),④反映建議(2)D.④反映建議(1),②反映建議(2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解貴州省某州2020屆高三理科生的化學(xué)成績的情況,該州教育局組織高三理科生進(jìn)行了摸底考試,現(xiàn)從參加考試的學(xué)生中隨機(jī)抽取了100名理科生,,將他們的化學(xué)成績(滿分為100分)分為6組,得到如圖所示的頻率分布直方圖.
(1)求a的值;
(2)記A表示事件“從參加考試的所有理科生中隨機(jī)抽取一名學(xué)生,該學(xué)生的化學(xué)成績不低于70分”,試估計事件A發(fā)生的概率;
(3)在抽取的100名理科生中,采用分層抽樣的方法從成績在內(nèi)的學(xué)生中抽取10名,再從這10名學(xué)生中隨機(jī)抽取4名,記這4名理科生成績在內(nèi)的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前項和為且滿足,(為常數(shù),).
(1)求;
(2)若數(shù)列是等比數(shù)列,求實(shí)數(shù)的值;
(3)是否存在實(shí)數(shù),使得數(shù)列滿足:可以從中取出無限多項并按原來的先后次序排成一個等差數(shù)列?若存在,求出所有滿足條件的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黃岡“一票通”景區(qū)旅游年卡,是由黃岡市旅游局策劃,黃岡市大別山旅游公司推出的一項惠民工程,持有旅游年卡一年內(nèi)可不限次暢游全市19家簽約景區(qū).為了解市民每年旅游消費(fèi)支出情況單位:百元,相關(guān)部門對已游覽某簽約景區(qū)的游客進(jìn)行隨機(jī)問卷調(diào)查,并把得到的數(shù)據(jù)列成如表所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) | 10 | 390 | 400 | 188 | 12 |
求所得樣本的中位數(shù)精確到百元;
根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為市民的旅游費(fèi)用支出服從正態(tài)分布,若該市總?cè)丝跒?/span>750萬人,試估計有多少市民每年旅游費(fèi)用支出在7500元以上;
若年旅游消費(fèi)支出在百元以上的游客一年內(nèi)會繼續(xù)來該景點(diǎn)游玩現(xiàn)從游客中隨機(jī)抽取3人,一年內(nèi)繼續(xù)來該景點(diǎn)游玩記2分,不來該景點(diǎn)游玩記1分,將上述調(diào)查所得的頻率視為概率,且游客之間的選擇意愿相互獨(dú)立,記總得分為隨機(jī)變量X,求X的分布列與數(shù)學(xué)期望.
參考數(shù)據(jù):,;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線,為其焦點(diǎn),為其準(zhǔn)線,過任作一條直線交拋物線于兩點(diǎn),、分別為、在上的射影,為的中點(diǎn),給出下列命題:
(1);(2);(3);
(4)與的交點(diǎn)的軸上;(5)與交于原點(diǎn).
其中真命題的序號為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由兩個全等的菱形和組成的空間圖形,,∠BAF=∠ECD=60°.
(1)求證:;
(2)如果二面角B-EF-D的平面角為60°,求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com