如圖,在四棱錐P-ABCD中,側(cè)棱PA丄底面ABCD底面ABCD為矩形,E為PD上一點(diǎn),AD=2AB=2AP=2,PE=2DE.
(I)若F為PE的中點(diǎn),求證BF∥平面ACE;
(Ⅱ)求三棱錐P-ACE的體積.

【答案】分析:(I)由題意可得E、F都是線段PD的三等分點(diǎn).設(shè)AC與BD的交點(diǎn)為O,則OE是△BDF的中位線,故有BF∥OE,再根據(jù)直線和平面平行的判定定理證得 BF∥平面ACE.
(II)由條件證明CD⊥平面PAE,再根據(jù)三棱錐P-ACE的體積VP-ACE=VC-PAE=S△PAE•CD=•PA•PD)•AB=•PA•PD•AB,運(yùn)算求得結(jié)果.
解答:解:(I)若F為PE的中點(diǎn),由于底面ABCD為矩形,E為PD上一點(diǎn),AD=2AB=2AP=2,PE=2DE,故E、F都是線段PD的三等分點(diǎn).
設(shè)AC與BD的交點(diǎn)為O,則OE是△BDF的中位線,故有BF∥OE,而OE在平面ACE內(nèi),BF不在平面ACE內(nèi),故BF∥平面ACE.
(II)由于側(cè)棱PA丄底面ABCD,且ABCD為矩形,故有CD⊥PA,CD⊥AD,故CD⊥平面PAE,.
三棱錐P-ACE的體積VP-ACE=VC-PAE=S△PAE•CD=•(•S△PAD)•AB=•PA•PD)•AB=•PA•PD•AB=•1•2•1=
點(diǎn)評(píng):本題主要考查直線和平面垂直的判定定理的應(yīng)用,用等體積法求棱錐的體積,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在四棱錐P-ABCD中,底面ABCD是矩形.已知AB=3,AD=2,PA=2,PD=2
2
,∠PAB=60°.
(1)證明AD⊥PB;
(2)求二面角P-BD-A的正切值大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,AB=4,PA=3,點(diǎn)A在PD上的射影為點(diǎn)G,點(diǎn)E在AB上,平面PEC⊥平面PDC.
(1)求證:AG∥平面PEC;
(2)求AE的長;
(3)求二面角E-PC-A的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,∠BCD=120°,BC⊥AB,CD⊥AD,BC=CD=PA=a,
(Ⅰ)求證:平面PBD⊥平面PAC.
(Ⅱ)求四棱錐P-ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面是邊長為a的菱形,∠ABC=60°PD⊥面ABCD,PC=a,E為PB中點(diǎn)
(1)求證;平面ACE⊥面ABCD;
(2)求三棱錐P-EDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在四棱錐P-ABCD中,底面ABCD是直角梯形,BC∥AD,且∠BAD=90°,又PA⊥底面ABCD,BC=AB=PA=1,AD=2.
(1)求二面角P-CD-A的平面角正切值,
(2)求A到面PCD的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案