已知函數(shù)f(x)=2x,等差數(shù)列{an}的公差為2,若f(a2+a4+a6+a8+a10)=4,則log2[f(a1)•f(a2)•f(a3)•…•f(a10)]=
 
考點(diǎn):等差數(shù)列的性質(zhì)
專題:計(jì)算題,等差數(shù)列與等比數(shù)列
分析:先根據(jù)等差數(shù)列{ax}的公差為2和a2+a4+a6+a8+a10=2進(jìn)而可得到a1+a3+a5+a7+a9=2-5×2=-8,即可得到a1+…+a10=-6,即可求出答案.
解答: 解:∵f(x)=2x,f(a2+a4+a6+a8+a10)=4,∴a2+a4+a6+a8+a10=2,
又{an}的公差為2,∴a1+a3+a5+a7+a9=(a2+a4+a6+a8+a10)-5d=-8,
∴a1+a2+…+a9+a10=-6,
∴l(xiāng)og2[f(a1)•f(a2)•f(a3)•…•f(a10)]=log22-6=-6.
故答案為:-6.
點(diǎn)評(píng):本題主要考查等差數(shù)列的性質(zhì)和指數(shù)函數(shù)的運(yùn)算法則.屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在區(qū)間[2,4]和[1,3]上分別隨機(jī)地取一個(gè)實(shí)數(shù),記為a,b,則方程
x2
a2
+
y2
b2
=1
表示焦點(diǎn)在x軸上且離心率小于
3
2
的橢圓的概率為( 。
A、
3
8
B、
5
8
C、
7
8
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等差數(shù)列{an}的前n項(xiàng)和為Sn,S9=-9,S17=-85,則a7的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A、
1
9
B、
1
10
C、
1
11
D、
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A={x|x>-3},B={x|x>m},若B⊆A,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

偶函數(shù)f(x)在[0,+∞)上是增函數(shù),則滿足f(2m-1)>f(m+1)的m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|0<x<6},B={x|x>a,x∈N*},若A∩B有8個(gè)子集,則整數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)m,n是兩條不同的直線,α、β是兩個(gè)不同的平面,則下列結(jié)論中正確的是( 。
A、若m⊥α,n∥α,則m⊥n
B、若m?α,n?α,則m 與 n 沒(méi)有公共點(diǎn)
C、若m∥n,m∥α,則n∥α
D、若α⊥β,m⊥β,則m∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算:(
2
3
100×(1
1
2
100×(
1
4
2014×42015

查看答案和解析>>

同步練習(xí)冊(cè)答案