已知復(fù)數(shù)z1=cos23°+isin23°和復(fù)數(shù)z2=cos37°+isin37°,則z1•z2為( )
A.
B.
C.
D.
【答案】分析:直接利用復(fù)數(shù)的加減法計(jì)算,
解答:解:z1•z2=(cos23°+isin23°)•(cos37°+isin37°)=cos60°+isin60°=
故選A
點(diǎn)評(píng):本題是基礎(chǔ)題,考查復(fù)數(shù)代數(shù)形式的混合運(yùn)算,棣莫佛定理的應(yīng)用,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=cosθ-i,z2=sinθ+i,則z1•z2的實(shí)部最大值為
 
,虛部最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=cosθ-i,z2=sinθ+i,求|z1•z2|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=cosα+isinα,z2=cosβ+isinβ,|z1-z2|=
2
5
5
,求:cos(α-β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z1=cos
π
9
+isin
π
9
和復(fù)數(shù)z2=cos
π
18
+isin
π
18
,則復(fù)數(shù)z1•z2的實(shí)部是
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•金山區(qū)二模)已知復(fù)數(shù)z1=cosθ+i和z2=1-isinθ,i為虛數(shù)單位,求|z1-z2|2的最大值和最小值,并寫(xiě)出相應(yīng)的θ的取值.

查看答案和解析>>

同步練習(xí)冊(cè)答案