若π<α<,化簡.

 

【答案】

cos

【解析】∵π<α<,∴<<

∴cos<0,sin>0.

∴原式=

=-=-cos.

 

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

M是由滿足下列兩個條件的函數(shù)構成的集合:

       ①議程有實根;②函數(shù)的導數(shù)滿足0<<1.

   (I)若,判斷方程的根的個數(shù);

   (II)判斷(I)中的函數(shù)是否為集合M的元素;

   (III)對于M中的任意函數(shù),設x1是方程的實根,求證:對于定義域中任意的x2x3,當| x2x1|<1,且| x3x1|<1時,有

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

<<0,則下列不等式:①a+b<ab;②|a|>|b|;③a<b;④a2<b2中,正確的個數(shù)是(    )

A.1       B.2        C.3       D.4

查看答案和解析>>

科目:高中數(shù)學 來源:2012屆江蘇省泰州中學高三上學期期中考試數(shù)學 題型:解答題

(本題滿分16分)A、B是函數(shù)f(x)=+的圖象上的任意兩點,且=(),已知點M的橫坐標為.
(Ⅰ)求證:M點的縱坐標為定值;
(Ⅱ)若Sn=f()+f()+…+f(),n∈N+且n≥2,求Sn
(Ⅲ)已知數(shù)列{an}的通項公式為. Tn為其前n項的和,若Tn<(Sn+1+1),對一切正整數(shù)都成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆黑龍江虎林高中高二下學期期中理科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實數(shù)a和b的值;

(2)若a<0,且對任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結合構造函數(shù)和導數(shù)的知識來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當a<0時,f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆寧夏銀川一中高三第三次月考文科數(shù)學試卷 題型:填空題

<<0, 則(1)a+ b < a b,  (2)|a|>|b|,  (3)a<b,  (4)中正確的有___________.

查看答案和解析>>

同步練習冊答案