y=kxb的兩個交點的直線與x軸交于,得

[  ]

A

B

C

D

答案:B
解析:


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列命題中:
(1)直線2x+y+8=0與直線x+y+3=0的交點坐標為(-5,2)
(2)已知點A(-2,-1),B(a,3)且|AB|=5,則a=1
(3)若兩平行直線2x+y-4=0與y=-2x-k-2的距離不大于
5
,則k的取值范圍是-11≤k≤-1,
(4)直線kx-y+1=3k(k∈R)恒過定點(3,1).
其中正確命題的個數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設直線y=kx與橢圓
x2
4
+
y2
3
=1
相交于A、B兩點,分別過A、B向x軸作垂線,若垂足恰為橢圓的兩個焦點,則k等于
±
3
2
±
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•靜安區(qū)一模)已知橢圓
x2
a2
+
y2
b2
=1
的兩個焦點為F1(-c,0)、F2(c,0),c2是a2與b2的等差中項,其中a、b、c都是正數(shù),過點A(0,-b)和B(a,0)的直線與原點的距離為
3
2

(1)求橢圓的方程;
(2)點P是橢圓上一動點,定點A1(0,2),求△F1PA1面積的最大值;
(3)已知定點E(-1,0),直線y=kx+t與橢圓交于C、D相異兩點.證明:對任意的t>0,都存在實數(shù)k,使得以線段CD為直徑的圓過E點.

查看答案和解析>>

科目:高中數(shù)學 來源:數(shù)學教研室 題型:013

與y=kx+b的兩個交點的直線與x軸交于,得

[  ]

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案