已知a,b,c,d∈R+,S=
a
a+b+d
+
b
a+b+c
+
c
b+c+d
+
d
a+c+d
,求證:1<S<2.
分析:對于分式的值,比較常用的方法時把分母或分子適當放大或縮。p去或加上一個正數(shù))使不等式簡化易證.
解答:證明:∵S>
a
a+b+c+d
+
b
a+b+c+d
+
c
a+b+c+d
+
d
a+b+c+d
=1,
S<
a
a+b
+
b
a+b
+
c
c+d
+
d
c+d
=2.
∴1<S<2.
點評:在證明不等式的時候,在直接證明遇到困難的時候,可以利用不等式的傳遞性,把要證明的不等式加強為一個易證的不等式,即欲證A>B,我們可以適當?shù)恼乙粋中間量C作為媒介,證明A>C且C>B,從而得到A>B.我們把這種把B放大到C(或把A縮小到C)的方法稱為放縮法.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

6、給出如下四個命題:
①對于任意一條直線a,平面α內必有無數(shù)條直線與a垂直;
②若α、β是兩個不重合的平面,l、m是兩條不重合的直線,則α∥β的一個充分而不必要條件是l⊥α,m⊥β,且l∥m;
③已知a、b、c、d是四條不重合的直線,如果a⊥c,a⊥d,b⊥c,b⊥d,則“a∥b”與“c∥d”不可能都不成立;
④已知命題P:若四點不共面,那么這四點中任何三點都不共線.
則命題P的逆否命題是假命題上命題中,正確命題的個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c,d都是正數(shù),S=
a
a+b+d
+
b
b+c+a
+
c
c+d+a
+
d
d+a+c
,則S的取值范圍是
(1,2)
(1,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>b,c>d,且a,b,c,d均不為0,那么下列不等式成立的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A、B、C、D四點不共面,且AB∥平面α,CD∥平面α,AC∩α=E,AD∩α=F,BD∩α=G,BC∩α=H,則四邊形EFGH是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c,d是實數(shù),用分析法證明:
a2+b2
+
c2+d2
(a+c)2+(b+d)2

查看答案和解析>>

同步練習冊答案