設(shè),利用三角變換,估計(jì)fk(x)在k=l,2,3時(shí)的取值情況,對(duì)k∈N*時(shí)推測(cè)fk(x)的取值范圍是    (結(jié)果用k表示).
【答案】分析:可求得k=l,2,3時(shí)fk(x)的取值范圍,利用歸納法可求得k∈N*時(shí)fk(x)的取值范圍.
解答:解:k=1,f1(x)=sin2x+cos2x=1,
k=2,f2(x)=sin4x+cos4x
=(sin2x+cos2x)2-2sin2x•cos2x
=(1-sin22x)∈[,1],
k=3,f3(x)=sin6x+cos6x
=(sin2x+cos2x)((sin2x+cos2x)2-3sin2x•cos2x)
=(1-sin22x)∈[,1],

∴k∈N*時(shí)fk(x)的取值范圍是≤fk(x)≤1.
故答案為:≤fk(x)≤1.
點(diǎn)評(píng):本題考查三角函數(shù)的最值,考查二倍角公式的應(yīng)用,考查綜合分析與應(yīng)用的能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(α)=sinxα+cosxα,x∈{n|n=2k,k∈N+},利用三角變換,估計(jì)f(α)在x=2,4,6時(shí)的取值情況,猜想對(duì)x取一般值時(shí)f(α)的取值范圍是
[
1
2k-1
,1]
[
1
2k-1
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)數(shù)學(xué)公式,利用三角變換,估計(jì)fk(x)在k=l,2,3時(shí)的取值情況,對(duì)k∈N*時(shí)推測(cè)fk(x)的取值范圍是________(結(jié)果用k表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)f(α)=sinxα+cosxα,x∈{n|n=2k,k∈N+},利用三角變換,估計(jì)f(α)在x=2,4,6時(shí)的取值情況,猜想對(duì)x取一般值時(shí)f(α)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省金華一中高一(下)期中數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)f(α)=sinxα+cosxα,x∈{n|n=2k,k∈N+},利用三角變換,估計(jì)f(α)在x=2,4,6時(shí)的取值情況,猜想對(duì)x取一般值時(shí)f(α)的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案