(2005•東城區(qū)一模)已知O為坐標(biāo)原點(diǎn),點(diǎn)E、F的坐標(biāo)分別為(-1,0)和(1,0).動(dòng)點(diǎn)P滿(mǎn)足|
PE
|+|
PF
|=4.
(Ⅰ)求動(dòng)點(diǎn)P的軌跡C的方程;
(Ⅱ)過(guò)E點(diǎn)做直線(xiàn)與C相交于M、N兩點(diǎn),且
ME
=2
EN
,求直線(xiàn)MN的方程.
分析:(1)由橢圓的定義可知,到兩個(gè)定點(diǎn)距離之和等于定長(zhǎng)的點(diǎn)的軌跡為橢圓,所以所求點(diǎn)P的軌跡C為橢圓,再分別求出橢圓中a,b的值即可.
(2)當(dāng)斜率存在時(shí),設(shè)出直線(xiàn)MN的點(diǎn)斜式方程,與(1)中所求橢圓方程聯(lián)立,求出x1+x2,x1x2,再根據(jù)
.
ME
=2
.
EN
,
即可求出k,得到直線(xiàn)MN的方程.
解答:解:(1)∵|
.
PE
|
+|
.
PF
|
=4
由橢圓的第一定義可知點(diǎn)P的軌跡為橢圓,
且2a=4,c=1,∴a2=4,b2=3
∴所求的橢圓方程為
x2
4
+
y2
3
=1

(2)①當(dāng)直線(xiàn)MN的斜率不存在時(shí),不滿(mǎn)足題意;
②當(dāng)直線(xiàn)MN的斜率存在時(shí),設(shè)其方程為y=k(x+1),
代入
x2
4
+
y2
3
=1
化簡(jiǎn)得(3+4k2)x2+8k2x+4k2-12=0
設(shè)兩交點(diǎn)的坐標(biāo)為M(x1,y1)、N(x2,y2
x1+x2=
-8k2
3+4k2
,x1x2=
4k2-12
3+4k2

M
E=2
E
N
,∴x1+2x2=-3
x2=-3+
8k2
3+4k2
=
-9-4k2
3+4k2
,x1=-3-2x2=
9-4k2
3+4k2

-9-4k2
3+4k2
×
9-4k2
3+4k2
=
4k2-12
3+4k2

k2=
5
4
,即k=±
5
2
,滿(mǎn)足△>0

∴所求的直線(xiàn)MN的方程為y=±
5
2
(x+1)
點(diǎn)評(píng):本題主要考查了定義法求軌跡方程,以及直線(xiàn)與橢圓位置關(guān)系的判斷.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•東城區(qū)一模)已知m、n為兩條不同的直線(xiàn)α、β為兩個(gè)不同的平面,給出下列四個(gè)命題
①若m?α,n∥α,則m∥n;
②若m⊥α,n∥α,則m⊥n;
③若m⊥α,m⊥β,則α∥β;
④若m∥α,n∥α,則m∥n.
其中真命題的序號(hào)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•東城區(qū)一模)復(fù)數(shù)(1+i)3的虛部是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•東城區(qū)一模)預(yù)測(cè)人口的變化趨勢(shì)有多種方法,最常用的是“直接推算法”,使用的公式是Pn=P0(1+k)n(k為常數(shù),k>-1),其中Pn為預(yù)測(cè)期內(nèi)n年后人口數(shù),P0為初期人口數(shù),k為預(yù)測(cè)期內(nèi)年增長(zhǎng)率,如果-1<k<0,那么在這期間人口數(shù)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•東城區(qū)一模)已知θ為第二象限角,sin(π-θ)=
24
25
,cos
θ
2
的值為(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案