若x,y滿足約束條件
x+y≥1
x-y≥-1
2x-y≤2
,則目標(biāo)函數(shù)z=x+2y的最小值是
 
分析:本題主要考查線性規(guī)劃的基本知識(shí),先畫出約束條件
x+y≥1
x-y≥-1
2x-y≤2
的可行域,再求出可行域中各角點(diǎn)的坐標(biāo),將各點(diǎn)坐標(biāo)代入目標(biāo)函數(shù)的解析式,分析后易得目標(biāo)函數(shù)Z=2x+y的最小值.
解答:精英家教網(wǎng)解:設(shè)變量x、y滿足約束條件
x+y≥1
x-y≥-1
2x-y≤2
,
在坐標(biāo)系中畫出可行域△ABC,A(1,0),B(3,4),C(0,1),
則目標(biāo)函數(shù)z=x+2y的最小值為1,
故答案為:1
點(diǎn)評(píng):在解決線性規(guī)劃的問題時(shí),我們常用“角點(diǎn)法”,其步驟為:①由約束條件畫出可行域?②求出可行域各個(gè)角點(diǎn)的坐標(biāo)?③將坐標(biāo)逐一代入目標(biāo)函數(shù)?④驗(yàn)證,求出最優(yōu)解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
x≥0
y≤x
2x+y-4≤0
( k為常數(shù)),則使z=x+3y的最大值為(  )
A、9
B、
16
3
C、-12
D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x、y滿足約束條件
x≥0
x+3y≥4
3x+y≤4
則z=-x+y的最小值為
0
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)若x,y滿足約束條件
x≥0
x+2y≥3
2x+y≤3
,則z=x-y的最小值是
-3
-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x、y滿足約束條件
x≥0
y≥0
2x+y-1≤0
則 x+2y
的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若x,y滿足約束條件
x-y+1≥0
x+y-3≤0
y≥0
,則z=x+2y的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案