設數(shù)列{an}的前n項和為Sn,已知a1=1,Sn=nan-2n(n-1)(n=1,2,3,…).
(Ⅰ)求證:數(shù)列{an}為等差數(shù)列,并分別寫出an和Sn關于n的表達式;
(Ⅱ)求;
(Ⅲ)是否存在自然數(shù)n,使得?若存在,求n的值;若不存在,說明理由.
【答案】分析:(Ⅰ)由題意知an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),從而得到an-an-1=4(n=2,3,4,).由此可知an=4n-3.所以
(Ⅱ)由題設知==;計算可得答案.
(Ⅲ)由題設條件知,所以.由此可知存在滿足條件的自然數(shù)n=20.
解答:解:(Ⅰ)當n≥2時,an=Sn-Sn-1=nan-(n-1)an-1-4(n-1),(2分)
得an-an-1=4(n=2,3,4,).(3分)
∴數(shù)列{an}是以a1=1為首項,4為公差的等差數(shù)列.(4分)
∴an=4n-3.(5分).(6分)
(Ⅱ)=
=(8分)
==.(10分)
(Ⅲ)由Sn=2n2-n得:,(11分)
.(13分)
令n2=400,得n=20,所以,存在滿足條件的自然數(shù)n=20.(14分)
點評:本題考查數(shù)列性質(zhì)的綜合運用,解題時要認真審題,仔細解答.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列an的前n項的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3
(2)求數(shù)列an的通項公式;
(3)設bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關系(只需給出結果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鄭州一模)設數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習冊答案