在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=a.

求證:PA⊥平面ABCD.

答案:
解析:

  證明:如下圖,∵底面ABCD是菱形,∠ABC=60°,


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a
,點(diǎn)E是PD的中點(diǎn).
(I)證明PA⊥平面ABCD,PB∥平面EAC;
(II)求以AC為棱,EAC與DAC為面的二面角θ的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=1,PB=PD=
2
,點(diǎn)E在PD上,且PE:ED=2:1,
(1)求四棱錐P-ABCD的體積;
(2)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在底面是菱形的四棱錐P-ABCD中,∠ABC=60°,PA=AC=a,PB=PD=
2
a,點(diǎn)E在PD上,且PE:ED=2:1.
(Ⅰ)求二面角E-AC-D的大。
(Ⅱ)在棱PC上是否存在一點(diǎn)F,使BF∥平面AEC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在底面是菱形的四棱錐P-ABCD中,PA⊥底面ABCD,∠ABC=60°,PA=AB=2,E是PD中點(diǎn).
(1)求證:PB∥平面ACE;
(2)求三棱錐E-ACD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在底面是菱形的四棱錐P-ABCD中,PA⊥平面ABCD,∠ADC=60°,點(diǎn)E,F(xiàn),G分別在PD,AD,AC上,且PE:ED=AF:FD=CG:GA=2:1.
(1)證明:PA∥平面EFG;
(2)證明:AC⊥EG.

查看答案和解析>>

同步練習(xí)冊(cè)答案