精英家教網 > 高中數學 > 題目詳情
3.△ABC的面積是10,內角A,B,C所對邊長分別為a,b,c,$cosA=\frac{12}{13}$,則$\overrightarrow{AB}•\overrightarrow{AC}$=( 。
A.144B.48C.24D.13

分析 由cosA的值,利用同角三角函數間的基本關系求出sinA的值,由三角形的面積為3及sinA的值,利用三角形的面積公式求出bc的值,然后由bc的值及cosA的值,利用平面向量的數量積的運算法則即可求出所求式子的值;

解答 解:因為在△ABC中,$cosA=\frac{12}{13}$,所以sinA=$\frac{5}{13}$.
因為S△ABC=$\frac{1}{2}$bcsinA=10,bc=42,
則$\overrightarrow{AB}•\overrightarrow{AC}$=|$\overrightarrow{AB}$|×|$\overrightarrow{AC}$|cosA=bccosA=42×$\frac{12}{13}$=48;
故選:B.

點評 此題考查了平面向量數量積的運算,同角三角函數間的基本關系,三角形的面積公式及余弦定理.熟練掌握法則及定理是解本題的關鍵.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

15.△ABC的三個內角A、B、C,所對的邊分別是a、b、c,若c=2$\sqrt{3}$,tanA+tanB=$\sqrt{3}$-$\sqrt{3}$tanAtanB,則△ABC的面積的取值范圍是( 。
A.[$\sqrt{3}$,+∞)B.(0,$\sqrt{3}$]C.($\frac{1}{2}$,$\sqrt{3}$]D.(0,$\frac{\sqrt{3}}{2}$]

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知x,y∈R,下列不等式不能恒成立的是( 。
A.|x|≥0B.x2-2x-3≥0C.2x>0D.x2+y2≥2xy

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.已知△ABC的面積為30,且cosA=$\frac{12}{13}$,則$\overrightarrow{AB}$$•\overrightarrow{AC}$等于( 。
A.72B.144C.150D.300

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.如圖是某幾何體的三視圖,圖中方格的單位長度為1,則該幾何體外接球的直徑為( 。
A.$2\sqrt{2}$B.$2\sqrt{3}$C.$2\sqrt{6}$D.4

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.在數列{an}中,已知a1=2,an+1=4an-3n+1
(1)證明:數列{an-n}是等比數列;
(2)求數列{an}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.解不等式:
(1)3≤|5-2x|<9
(2)|x-1|+|x-2|<2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.如圖,等腰直角三角形區(qū)域ABC中,∠ACB=90°,BC=AC=1百米.現準備劃出一塊三角形區(qū)域CDE,其中D,E均在斜邊AB上,且∠DCE=45°.記三角形CDE的面積為S.
(1)①設∠BCE=θ,試用θ表示S;
②設AD=x,試用x表示S;
(2)求S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

13.已知A={x|x2-3x+2≤0},B={-2,-1,0,1,2},則A∩B=( 。
A.{-1,0}B.{0,1}C.{1,2}D.

查看答案和解析>>

同步練習冊答案