關(guān)于x的不等式(mx-1)(x-2)<0的解為2<x<
1
m
,則m的取值范圍是(  )
A、m<
1
2
B、m>0
C、0<m<
1
2
D、0<m<2
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:根據(jù)一元二次不等式與二次函數(shù)之間的關(guān)系,可知m>0,并且對于方程的兩根為
1
m
>2
,解之即可.
解答: 解:由已知關(guān)于x的不等式(mx-1)(x-2)<0的解為2<x<
1
m

可得m>0并且
1
m
>2
,解得0<m<
1
2
;
故選C.
點(diǎn)評:本題考查了一元二次不等式的解法以及三個二次之間的關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式組
x2-4x+3<0
x2+2x-8>0
的解集是A,且存在x0∈A,使得不等式x2-ax+4>0成立.
(Ⅰ)求集合A;
(Ⅱ)求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓M:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦點(diǎn)分別為F1,F(xiàn)2,P為橢圓M上任一點(diǎn),且|PF1•PF2|最大值取值范圍為[2c2,3c2]其中c=
a2+b2
,則橢圓M的離心率為 ( 。
A、[
2
2
,1)
B、[
3
3
,
2
2
]
C、[
3
3
,1)
D、[
1
3
,
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
3x-a
3x+1
是奇函數(shù),則f(1)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>b>0,則下列不等式成立的是( 。
A、a>b>
a+b
2
ab
B、a>
ab
a+b
2
>b
C、a>
a+b
2
>b>
ab
D、a>
a+b
2
ab
>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1,其長軸長是短軸長的2倍,右焦點(diǎn)到左頂點(diǎn)的距離為2+
3

(1)求橢圓的方程;
(2)過點(diǎn)(0,m)且傾斜角為
π
4
的直線l與橢圓交于A、B兩點(diǎn),當(dāng)△AOB(O為原點(diǎn))的面積最大時,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知(1-2x)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,則a1+a2+a3+a4+a5+a6=( 。
A、-2B、-1C、0D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為e=
3
2
,且過點(diǎn)(
3
,
1
2
)
,求橢圓C的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P(-1,1),Q(2,2),直線l:y-kx+1=0與線段PQ相交,則實(shí)數(shù)k的取值范圍( 。
A、[-2,
3
2
]
B、(-∞,-2]∪[
1
3
,+∞)
C、[-2,
1
3
]
D、(-∞,-2]∪[
3
2
,+∞)

查看答案和解析>>

同步練習(xí)冊答案